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CAPS Ensemble Experiment Goals 
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• Test FV3 CAM ensemble in quasi-operational winter setting:
HMT Winter Weather Experiments – Add MPAS for 2025

• Generate CAM ensemble forecasts
• Test various physics combinations for possible operational 

use such as nascent Rapid Refresh Forecast System
• Evaluate ensemble consensus methods
• Develop machine learning (ML) algorithms to create 

quantitative rainfall and snowfall forecasts 



CAPS Ensemble for 14th WWE (2023-2024)
FV3-LAM CAM Ensemble Configuration

• 11 FV3-LAM members
• 3 km grid spacing (GFDL grid)
• 64 vertical levels
• 84-hr forecasts initialized at 00 UTC
• Run at Texas Advanced Computing 

Center – Frontera
• Total of 30 days run for objective 

verification and ML training
• Results posted to web:

https://caps.ou.edu/forecast/realtime/
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14th HMT WWE (2023-24) CAPS Ensemble (11 Members)
Decoding member names:
M: Microphysics
• M0 = Thompson
• M1 = NSSL
B: Boundary Layer Scheme
• B0 = MYNN
• B1 = Shin-Hong
• B2 = TKE-EDMF
L: Land Surface Model
• L0 = NOAH
• L1 = NOAHMP
• L2 = RUC
P: Uses physics perturbations
I: Uses IC/LBC perturbations

Experiment Microphysics PBL Surface LSM IC/LBC AI/ML

Multi-Physics Core Configurations, Same IC/LBC

M0B0L0_P Thompson MYNN MYNN NOAH GFS AI-1

M1B0L0_P NSSL MYNN MYNN NOAH GFS AI-2

M0B0L2_P Thompson MYNN MYNN RUC GFS

M1B2L2_P NSSL TKE-EDMF GFS RUC GFS

M0B2L1_P Thompson TKE-EDMF GFS NOAHMP GFS AI-3

Physics + IC Perturbation Ensemble

M0B1L0_PI Thompson Shin-Hong GFS NOAH GEFS_m1

M0B2L1_PI Thompson TKE-EDMF GFS NOAHMP GEFS_m2

M0B2L2_PI Thompson TKE-EDMF GFS RUC GEFS_m3 AI-4

M1B1L0_PI NSSL Shin-Hong GFS NOAH GEFS_m4

M1B2L1_PI NSSL TKE-EDMF GFS NOAHMP GEFS_m5

M1B2L2_PI NSSL TKE-EDMF GFS RUC GEFS_m6

Some members are configured 
similarly to operational or 
experimental models:
M0B0L2_P: Similar to RRFSm1
M1B2L2_P: Similar to RRFSmphys8
M0B2L1_P: Similar to GFSv16
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Sample Case (Core Configurations) – Jan. 15-17 2024

• 24-h forecast of 6-h 
accumulated snowfall 
forecasts valid at 00 UTC 
16 Jan. 2024

• All core config. members 
capture the snowfall 
bands well, with slight 
variation in 
placement/intensity of 
heaviest snow

• Very little difference 
between ensemble 
consensus methods 
(simple mean, PM/LPM 
mean)
• Close agreement between 

members
• Broad, synoptically-driven 

features
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Sample Case (Core Configurations) – Jan. 15-17 2024

• 48-h forecast of 6-h 
accumulated snowfall 
forecasts valid at 00 
UTC 17 Jan. 2024

• All members 
underpredict intensity 
of heaviest snowfall in 
VT/NH/ME and fail to 
capture light snowfall 
extending south along 
the Appalachians.



• Observations used: 
• Total Precipitation: Stage-4 precipitation accumulation
• Snowfall: NOHRSC Snowfall Analyses

• Software package used: MET-Plus v11.1.0
from the Developmental Testbed Center)

• Metrics include frequency bias and equitable threat score (ETS)
• Several intensity thresholds are considered to focus on light versus heavy 

rainfall/snowfall.
• All verification metrics are calculated using a 30 km neighborhood radius.
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Forecast Verification (Seasonal Summary Statistics)
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Verification: 24-h accumulated precipitation, 1 mm (precip/no-precip)

• Individual member biases vary, but are generally near unbiased (0.8 – 1.1).
• Simple mean has an overall high bias at 1 mm threshold, as expected due to smoothing
• ETS for ensemble consensus products outperforms individual members for day 2 and especially day 3.

Day 1 Day 2 Day 3

1 mm threshold
Interpretation: rain vs. no rain
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Verification: 6-h accumulated precipitation, 1 mm threshold

• Individual member biases still near unbiased (0.8 – 1.2), simple mean bias is higher, especially at night.
• PM and especially LPM exhibit very good bias characteristics, day and night.
• Notable diurnal cycle impacts, particularly for bias (high bias maximized during night and early morning).

Day Night Day Night Day Night

1 mm threshold
Interpretation: rain vs. no rain
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Verification: 6-h accumulated precipitation, 25 mm threshold

• Spin up 0-6 h, then high bias during daytime and evening hours, near-neutral bias overnight into the morning hours.
• Diurnal cycle evident in both frequency bias and ETS (ETS highest in early morning hours, lowest in evening).
• Relative member performance varies with lead-time; M0B0L0 and M0B2L1 are among best performers.

Day Night Day Night Day Night

25 mm threshold
Interpretation: mdt./hvy. rain
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Verification: 24-h accumulated snowfall, 1 mm threshold
• Low bias in total 

area receiving 
snowfall, 
particularly for Day 
3 and for  members 
using NSSL 
microphysics 
(purple bars)

• Ensemble 
consensus 
forecasts are nearly 
unbiased (0.9 –
1.0).

• Best performing 
member: M0B0L0

1 mm threshold
Interpretation: snow vs. no snow

Day 1 Day 2 Day 3
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Verification: 24-h accumulated snowfall, 75 mm threshold

75 mm (3.0 in.) threshold
Interpretation: moderate snow

• NSSL  
microphysics 
members 
(purple bars) 
show low bias 
in accumulated 
mdt/hvy snow.

• Benefit of 
ensemble 
consensus on 
forecast skill 
only becomes 
evident late in 
forecast period 
(Day 3).

Day 1 Day 2 Day 3
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Planned 15th HMT WWE (2024-2025) CAPS Ensemble
Decoding member names:
M: Microphysics
• M0 = Thompson
• M1 = NSSL
B: Boundary Layer Scheme
• B0 = MYNN
• B1 = Shin-Hong
• B2 = TKE-EDMF
L: Land Surface Model
• L0 = NOAH
• L1 = NOAHMP
• L2 = RUC
C: Uses cumulus scheme
MP: MPAS member

Near real-time forecast graphics are available online: 
https://caps.ou.edu/forecast/realtime/

Experiment Microphysics PBL Surface LSM IC/LBC Cumulus AI/ML

FV3-LAM Ensemble (Core Configurations)

M0B0L0 Thompson MYNN MYNN NOAH GFS None AI-1

M1B0L0 NSSL MYNN MYNN NOAH GFS None AI-2

M1B0L2 NSSL MYNN MYNN RUC GFS None

M0B2L1 Thompson TKE-EDMF GFS NOAHMP GFS None AI-3

M0B0L2 Thompson TKE-EDMF MYNN RUC GFS None AI-4

Experimental MPAS Ensemble
M0B0L2_MP Thompson MYNN MYNN RUC GEFS_m1 None

M1B0L2_MP NSSL MYNN MYNN RUC GEFS_m2 None

M0B0L0_MP Thompson MYNN MYNN NOAH GEFS_m3 None

M1B0L0_MP NSSL MYNN MYNN NOAH GEFS_m4 None

M1B0L2C_MP NSSL MYNN MYNN NOAH GEFS_m5 SA-New-Tiedtke

Some members are 
configured similarly to 
operational or experimental 
models:
M1B0L0_P: Similar to WoFS
M1B0L2: Similar to RRFSm1
M0B2L1_P: Similar to GFSv16

M0B0L2_MP: Similar to GSL-01
M1B0L2_MP: Similar to NSSL-01
M0B0L0_MP: Similar to NCAR-01



MPAS Workflow

MPAS Model

MPAS IC/LBC
Processor

MPASSIT (NSSL)

UPP (WRF version)

GFS Forecast 
Files (grib2)

MPAS Forecast Files 
on Unstructured 
Voronoi mesh
(netCDF)

WRF-Like on
Cartesian HREF 
grid (netCDF)

MPAS IC/LBC 
Files (netCDF)

GRIB2 Products
CAPS ensemble
plotting, processing
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Sample Case (FV3-LAM Members) – Jan 5-7 2025
36 hour Forecast
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Sample Case (Ensemble Consensus Products) – Jan 5-7 2025

36 hour Forecast
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Sample Case (Ensemble Consensus Products) – Jan 5-7 2025

42 hour Forecast
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Sample Case (Ensemble Consensus Products) – Jan 5-7 2025

48 hour Forecast
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Sample Case (Ensemble Consensus Products) – Jan 5-7 2025

54 hour Forecast
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Sample Case (Ensemble Consensus Products) – Jan 5-7 2025

60 hour Forecast
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Sample Case (Ensemble Consensus Products) – Jan 5-7 2025

66 hour Forecast
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Sample Case (Ensemble Consensus Products) – Jan 5-7 2025

72 hour Forecast
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Sample Case (Machine Learning Products) – Jan 5-6 2025

12-hour U-net Forecast6-h Snowfall 12z 05 Jan 2025
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Sample Case (Machine Learning Products) – Jan 5-6 2025

18-hour U-net Forecast6-h Snowfall 18z 05 Jan 2025
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Sample Case (Machine Learning Products) – Jan 5-6 2025

24-hour U-net Forecast6-h Snowfall 00z 06 Jan 2025
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Sample Case (Machine Learning Products) – Jan 5-6 2025

30-hour U-net Forecast6-h Snowfall 06z 06 Jan 2025



27

Sample Case (Machine Learning Products) – Jan 5-6 2025

36-hour U-net Forecast6-h Snowfall 12z 06 Jan 2025



Machine Learning Component

• Performed in collaboration with NSF AI2ES Institute hosted at OU

• U-Net Convolutional Neural Network (Deep Learning)

• Builds upon earlier ML hail prediction for HWT (2017-2021)
and ML rainfall prediction in HMT FFaIR

• Uses 8 HREF (4 each at 00, 12 UTC) and 4 CAPS FV3-LAM members.



• CAPS FV3 Rainfall & Snowfall U-Nets use a collection of 2-D forecast images at different vertical levels as inputs 
for training.

• Patch size, number of connections, and number of layers are being evaluated as hyper-parameters (the exact 
details of the architecture shown below will likely change in later iterations).
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ML Methods: U-Net Architecture



Current version of CAPS Snowfall U-Net uses 35 2-D NWP
forecast variables relevant to snowfall prediction

:Variable Level(s) Used (and/or other notes)

Geopotential height 500 hPa

Temperature 500, 700, 850, 925, 1000 hPa; 2 m AGL

Dewpoint 500, 700, 850, 925, 1000 hPa; 2 m AGL

u- and v- wind components 500 hPa; 10 m AGL

6-h maximum reflectivity 1 km AGL

Precipitable water column-integrated

Hourly maximum updraft velocity column maximum

6-h accumulated precipitation

6-h accumulated snowfall

Echo-top height 

Mean Sea Level Pressure

Categorical SNOW, ICEP, FRZR, and RAIN binary yes/no based on PTYPE at surface

Terrain Mean, Standard Deviation, Slope Source: ASTER Global Digital Elevation Model

Vorticity 850, 500 hPa

Divergence 850, 500 hPa

Moisture Convergence 850 hPa; 10 m AGL

Land Use Classification Classification source: WSSI Land Use Factor 30

ML Methods: Input Data (Training & Forecast Generation)

• Blue: Variable is 
used only for 
snowfall 
prediction (not 
for rainfall)

• Red: Variable is 
newly-added for 
2023-2024 (not 
used in prior 
years)



• Variables predicted: Probability of 6-h snowfall > 1, 2, and 3 inches, as well as ML 
ensemble simple mean (“ML best guess”).

• ML-predicted total snowfall (individual members and ensemble consensus) is being developed and 
evaluated internally, may be included in future year HMT WWE products.

• Observations (used for ML training and evaluation): NOHRSC snowfall analyses
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ML Methods: Input Data (Training & Forecast Generation)

NOHRSC 6-hr snowfall accumulation U-Net NMEP of 6-h snowfall > 3.0”

NOHRSC observations and 24-h ensemble ML simple mean valid 0000 UTC on 20 Jan. 2025



• Variables predicted: Probability of 6-h snowfall > 1, 2, and 3 inches, as well as ML 
ensemble simple mean (“ML best guess”).

• ML-predicted total snowfall (individual members and ensemble consensus) is being developed and 
evaluated internally, may be included in future year HMT WWE products.

• Observations (used for ML training and evaluation): NOHRSC snowfall analyses
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ML Methods: Input Data (Training & Forecast Generation)

NOHRSC 6-hr snowfall accumulation U-Net ensemble mean 6-h snowfall

NOHRSC observations and 24-h ensemble ML simple mean valid 0000 UTC on 20 Jan. 2025



ML Methods: Patches, Training, and Forecast Generation

• Patch-wise U-Net predictions are generated using 
64 x 64 overlapping grid square patches.

• Patches are stitched together to form the full CONUS 
prediction

• Weighted averaging of overlapping patches & applying 
light smoothing to the stitched forecast field minimizes 
discontinuities at patch boundaries

• Ensemble HREF+ probabilities are calculated from 
individual member predictions using a 
neighborhood maximum ensemble probability 
(NMEP) approach.

• A label offset (a modest, constant snowfall 
amount added to labels in regions of non-zero 
observed snowfall) is used.

• Goal of label offset is to boost squared-error penalties 
and prevent the ML model from over-predicting 
regions of light snowfall.

• The label offset is subtracted out from the final 
forecast products to prevent the introduction of a non-
physical high bias.
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ML Methods: Hyperparameter Optimization
• Hyperband (Li et al. 2018) was used for ML hyperparameter optimization.
• Hyperparameters optimized include learning rate, depth of U-net, number of channels in hidden 

layers, and normalization approach.

Reference: Li, L., K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, 2018: Hyperband: A novel bandit-based approach to hyperparameter optimization. arXiv, https://doi.org/10.48550/arXiv.1603.06560
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ML Results: 30-h forecast valid 0600 UTC, 20 Jan. 2025

NOHRSC 6-hr snowfall accumulation

NWP Simple Ensemble Mean

U-net NMEP simple ensemble mean

U-net NMEP of snowfall > 3.0 inches

• 30-h U-net forecasts 
capture band of heavy 
snowfall over 
ME/NH/VT/MA with good 
timing/position accuracy

• ML simple mean often 
underforecasts—this is a 
rare instance where ML 
simple mean 
overforecasts snowfall.

• ML probability of 
snowfall > 3.0” performs 
quite well.

• ML simple mean does 
decent job with lighter 
snowfall in, e.g., MI, WV, 
CO, WY.
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ML Results: 24-h forecast valid 0000 UTC, 15 Dec. 2024

NOHRSC 6-hr snowfall accumulation

NWP Simple Ensemble Mean

U-net NMEP simple ensemble mean

U-net NMEP of snowfall > 1.0 inches

• Both raw NWP and ML 
forecasts do a good job of 
capturing terrain-influenced 
snowfall in CA, CO.

• ML simple mean actually 
slightly better than NWP 
simple mean on peak 
snowfall amounts in 
heaviest bands!

• U-net NMEP forecasts 
produce overly-broad 
regions of high probability 
of snowfall exceeding 1.0”, 
this is particularly notable 
over mountainous areas.

• Over-prediction of spatial 
coverage in U-net NMEP 
might be addressed by 
reducing/optimizing 
neighborhood radius –
evaluation is ongoing.



• All CAPS FV3-LAM ensemble members appear to accurately capture 
spatial patterns of precipitation/snowfall.

• No strong bias in precipitation forecasts; benefit of ensemble consensus 
most evident at longer lead-times.

• Forecast members using NSSL microphysics scheme (M1*)  tend to under-
forecast snowfall (low frequency bias) – snowfall ETS is also slightly lower 
for NSSL (M1*) members.

• Machine learning (ML) NMEP snowfall forecasts perform well, though 
NMEP sometimes results in spatial over-prediction.

• ML simple mean is performing quite well in many cases during 2024-2025 
testing, in some cases outperforming CAPS FV3 NWP simple mean!

• Work is continuing during the 2024-2025 HMT WWE
• Experimental MPAS ensemble is being tested
• ML ensemble U-net continues to be optimized and evaluated—future version 

using MPAS is planned once sufficient training data have been collected.
37

Conclusions and Updates/Future Work
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