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1. Introduction 
 
The National Centers for Environmental Prediction (NCEP) Weather Prediction Center (WPC) 
issues Excessive Rainfall Outlooks (ERO) probabilistically identifying regions where rainfall totals 
may exceed NWS River Forecast Center Flash Flood Guidance (FFG) over Days 1, 2 and 3 (72 
hours).  Additionally, WPC operates the MetWatch Desk which is responsible for issuing 
Mesoscale Precipitation Discussions (MPDs): short-term (1-6 hours), event-driven forecasts that 
highlight regions where heavy rainfall may lead to flash flooding.  While the goal of the ERO is 
to provide information about flooding rain potential several days in advance, MPDs are 
designed to enhance near-term situational awareness among local NWS offices, the media, and 
emergency managers. 
 
In an effort to support the advancement of research to WPC and NWS field operations, the 
Hydrometeorology Testbed at WPC (HMT-WPC) continues to partner with NWS meteorologists, 
hydrologists, and the development and research communities to conduct the Flash Flood and 
Intense Rainfall (FFaIR) Experiment.  
 
The 2017 experiment focused on the use of high resolution guidance to improve flash flood 
forecasts in both the short range (6-12 hours) and at longer time scales (48-72 hours). To 
simulate the flow of information that occurs from a national center (e.g. WPC) to the local 
forecast offices, this year’s experiment attempted to engage the Science and Operations Officer 
(SOO) community by hosting a daily GoToMeeting and teleconference to discuss the 
experimental guidance and forecast activities with the goal of enhancing flash flood situational 
awareness and collaborate on possible experimental flash flood watch issuance. 

 
2. Science and Operations Goals 

 
The 2017 experiment provided a real-time pseudo-operational environment in which 
participants from across the weather enterprise could work together to explore the utility of 
emerging model guidance and tools for improving flash flood forecasts.  This year’s experiment 
again emphasized the rapid incorporation of the latest observational and model guidance into 
the decision making process while also challenging participants to simulate the collaboration 
that occurs between the national centers and local forecast offices during flash flood events. 

 
The goals of the 2017 Flash Flood and Intense Rainfall Experiment were to: 
 

▪ Identify ways to maximize the utility of high resolution convection-allowing 
models and ensembles for short-term flash flood forecasts. 

▪ Evaluate the utility of high resolution convection-allowing deterministic models 
for flood forecasts at longer time ranges (Day 2-3). 

▪ Identify effective forms and proper usage of available hydrologic guidance for the 
assessment of flood risk. 

▪ Explore proposed changes to WPC’s operational Excessive Rainfall Outlook by evaluating 
the utility of an experimental “first guess” recommender for Day 2 and Day 3 

2 



respectively. 
▪ Enhance collaboration between the operational forecasting, research, and academic 

communities on the forecast challenges associated with short-term flash flood 
forecasting. 

 
Table 1. Research to Operations Transition Metrics for the 2017 FFaIR Experiment 

 
 
3. Experiment Operations 

 
Forecast Activities 
 
The experiment was conducted for four weeks beginning June 19, 2017 in the WPC-OPC 
Collaboration Room at the NOAA Center for Weather and Climate Prediction (NCWCP) in 
College Park, MD: 
 

Week 1:  June 19 – 23, 2017 (Monday – Friday) 
Week 2: June 26 – 30, 2017 (Monday – Friday) 
Week 3:  July 10 – 14, 2017 (Monday – Friday) 
Week 4:  July 17 – 21, 2017 (Monday – Friday) 
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Each morning, participants were paired with a WPC forecaster as part of a collaborative 
forecast team and were tasked to create a Day 1, short-term, Probability of Flash Flooding (PFF) 
forecast valid for six hours from 18-00Z using probability contours of 15% (slight), 30% 
(moderate), and 50% (high) that conveyed the likelihood of flash flooding occurring within 40 
km of a point.  The forecast was created over a limited domain within the contiguous United 
States (CONUS).  The PFF exercise helps support improvements to the WPC MetWatch Desk 
operations by using experimental guidance in a shorter, 6 hour timeframe. 
 
During the afternoon, participants utilized longer range, high-resolution, convection-allowing 
models (CAMs) along with other guidance to create a Day 2 Excessive Rainfall Outlook (ERO), 
which is defined as the probability of flooding rains occurring within 40 kms of a point.  The Day 
2 ERO was valid over the whole CONUS for 24 hours beginning the next day (12Z to 12Z, 36-60 
hour forecast) and used probability contours of 5% (marginal), 15% (slight), 30% (moderate) 
and 50% (high) to convey the risk.  After issuing the Day 2 ERO, participants had the option to 
issue an experimental Flood Watch over the same Day 2 period that could be valid between 6 
and 24 hours.  Participants then issued a Day 3 ERO, defined the same as the Day 2 but valid for 
60-84 hours.  Lastly, participants utilized the Advanced Weather Interactive Processing System 
(AWIPS) II to analyze the beginning period of their PFF forecast area by using various real and 
near-real time models and tools. 
 
SOO/DOH/WFO Daily Briefing 
 
Each day an email message (a sample shown in Figure 1) was distributed to the SOO, 
Development and Operations Hydrologist (DOH), and associated partner communities inviting 
all to join the afternoon teleconference call including the limited domain focus of the 6-hour 
forecast (valid 18-00Z) and other highlights. This call was paired with a GoToMeeting 
PowerPoint presentation built throughout the day by the participants showing the three 
experimental forecasts (the PFF and Day 2 and 3 EROs) and a sampling of the experimental 
guidance that supported those forecasts. The briefings were designed to simulate collaboration 
between a national center and the WFO field offices when developing and communicating flash 
flood forecasts and potential flood watches.  
 

 
Figure 1. Left: A sample of the email distributed to the SOO/DOH communities. Right:  A FFaIR 
Experiment participant volunteer delivers the forecast briefing via teleconference call and 
GoToMeeting. 
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Verification 
 
Participants started each day with subjective evaluation which consisted of 11 science 
questions presented to the participants by the testbed staff.  These questions included 
evaluation of the experimental FFaIR forecasts as well as other experimental models and tools 
used during the forecasting process.  Participants used white boards to rank each experimental 
guidance, tool, or forecast on a scale from 1 (very poor) to 10 (very good).  Individual scores 
were then recorded and averaged to arrive at one rounded score for the question, however, all 
of the individual scores were used and considered for all statistics.  New this year, individual 
model and ensemble names were removed from the titles of the evaluation graphics so the 
participants did not know which model they were assigning scores to each day.  This was done 
to attempt to remove preconceived biases that a participant might hold for any particular 
model.  Table 2 shows the science questions and their associated number of subjective scores. 
The total number of scores reflects both model availability and the number of participants 
providing scores. 
 
Table 2.  The number of total science question subjective scores provided by experiment 
participants for each available. 

 
 
A number of verification resources were used to score the experimental forecasts.  Figure 2 
displays an example of how the PFF was evaluated.  Panel (1) is the PFF valid from 18 UTC June 
23 to 00 UTC June 24, 2017 with flash flood local storm reports (LSRs), flood LSRs, mobile 
Precipitation Identification Near the Ground (mPING) reports, specially screened United States 
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Geological Survey (USGS) gauge reports, as well as flash flood warning polygons issued by local 
WFOs during the valid time of the forecast.  Panel (2) shows the Multi-Radar, Multi-Sensor 
(MRMS) quantitative precipitation estimate (QPE) over the forecast period.  The MRMS QPE 
used in the experiment included estimates from radar sources only.  Panel (3) displays the 
practically perfect analysis which creates a neighborhood probabilistic forecast based on the 
flash flood reports received serving as a representation of what the forecast should have been 
if the forecaster had prior knowledge of where the reports would be located.  Panel (4) shows 
the areas where the MRMS QPE exceeded the flash flood guidance (FFG). 
 

 
Figure 2.  Verification for the PFF forecast valid 18 UTC June 23 -- 00 UTC June 24.  (1) Display of 
the forecast contours with flash flood and flood reports and operational flash flood warnings 
overlaid.  (2) MRMS QPE valid over the forecast period.  (3) Practically perfect analysis.  (4) 
Areas where MRMS QPE exceeded flash flood guidance. 
 
WPC operational EROs are verified by areas where precipitation exceeds FFG.  For the ERO 
forecasts issued in FFaIR, a new verification method called the Unified Flood Verification (UFV) 
system was used in an effort to expand beyond just using FFG to verify the ERO.  The UFV 
system uses a combination of FFG, average recurrence intervals, and observations and reports 
and applies a 40 km radius to each point that is considered a hit in the three different 
categories and combines all three onto one map.  An example of the UFV is shown in Figure 3 
with a Day 2 ERO overlaid, valid 12 UTC June 23 to 12 UTC June 24, 2017.  Using FFG, areas 
where 1, 3, and 6 hour QPE exceeded FFG during the 24 hour period are considered hits. 
Anywhere the 5 year, 24 hour average recurrence interval (ARI) was exceeded over the 24 hour 
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period is considered a hit.  Finally, anywhere that a flash flood LSR, flood LSR, mPING, or USGS 
gauge report was reported is also considered a hit.  This was the first year using the UFV for 
ERO verification in FFaIR.  All model QPF evaluations were verified using the MRMS radar-only 
QPE. 
 

 
Figure 3.  The Unified Flood Verification system (green dots) which includes 1-, 3-, 6-hour QPE 
exceeding FFG, 5 year 24 ARI exceedance, and flash flood and flood LSRs, mPING reports, and 
USGS gauge reports, where all hits have a 40 km neighborhood radius filter applied.  The Day 2 
ERO valid 12 UTC June 23 to 12 UTC June 24, 2017 is overlaid. 
 
After the subjective verification, the Method for Object-Based Diagnostic Evaluation (MODE) 
was used to compare various forecasted QPF thresholds from several models to Stage IV QPE 
(see Appendix C for WPC MODE settings).  MODE outputs various statistics comparing the 
forecasted objects (model QPF) to the observed objects (Stage IV QPE) including centroid 
distance, angle, and intersection area.  The Gilbert Skill Score (GSS) and critical success index 
(CSI), commonly referred to as Equitable Threat Score and Threat score respectively, were also 
computed over the whole domain for several models.  All model QPF and QPE were re-gridded 
to a common 5km grid with a CONUS mask applied.  An example of the MODE verification for 
60 hour forecast from the 3 km NAM Nest of 24 hour QPF at the 1 inch threshold valid at 12 
UTC June 23, 2017 is shown in Figure 4.  The overall performance of select models were tracked 
on a daily basis as well as cumulatively throughout the entire experiment using Roebber 
Performance Diagrams (Roebber, 2009), pictured in Figure 5.  A Roebber Performance Diagram 
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provides a way to visualize a number of measures of forecast quality including probability of 
detection, false alarm ratio, bias, and critical success index in a single diagram. 
 

 
Figure 4.  MODE analysis for the 60 hour 3 km NAM Nest forecast for 24 hour QPF at the 1 inch 
threshold valid from 12 UTC June 22 to 12 UTC June 23, 2017.  
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Figure 5.  Example of a Roebber Performance Diagram.  Y-axis probability of detection, x-axis 
success ratio (1 - false alarm ratio), dashed diagonal lines represent the bias, and curved solid 
lines represent critical success index. 
 

Featured Guidance and Tools for Experimental Forecasts 
 
In addition to the full multi-center suite of operational deterministic and ensemble guidance, 
the 2017 FFaIR Experiment featured several experimental ensemble systems including the 
experimental Storm-Scale Ensemble Forecast (SSEFX) from the University of Oklahoma (OU) 
and Center for Analysis and Prediction of Storms (CAPS), the High-Resolution Rapid Refresh 
Ensemble (HRRRE) and Time-Lagged HRRR (HRRR-TLE) from Earth Systems Research Laboratory 
(ESRL), and the Experimental High Resolution Ensemble Forecast (HREFv2) provided by 
Environmental Modeling Center (EMC).  The experiment also featured several deterministic 
high-resolution guidance systems including the High Resolution Rapid Refresh (HRRRv3) 
provided by ESRL, the 3 km nested North American Mesoscale Model, version 4 (NAM) 
provided by EMC (now the operational NAM Nest), and the Unified Model (UM) provided by 
the Met Office.  At longer ranges, the experiment featured probabilities derived from  the 
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National Water Model (NWM) provided by the Office of Water Prediction (OWP), the GFS run 
of the FV3 dynamical core provided by EMC (FV3-GFS), the OU/CAPS run of the FV3 dynamical 
core (FV3-CAPS), as well as a version of the FV3 provided by the Geophysical Fluid Dynamics 
Laboratory (GFDL, FV3-GFDL).  Table 3 summarizes the model data that was the focus of the 
experiment.  Other scientific tools that were evaluated include a “first guess” field for the Day 2 
and Day 3 ERO developed at Colorado State University (CSU) which utilizes reforecast data, 
ARIs, and machine learning to produce the probability of the QPE exceeding a 1 or 10 year ARI 
within a 40 km radius.  Some real time experimental tools that were provided include the 
Flooded Locations and Simulated Hydrographs (FLASH) data, GOES-16 total and layered 
precipitable water, as well as the Cooperative Institute for Research in the Atmosphere (CIRA) 
layered precipitable water.  More detailed information including more detailed descriptions 
and configurations of the models included in Table 3 can be found in Appendix B. 
 
Table 3. Featured 2017 FFaIR deterministic and ensemble model guidance (Experimental guidance is in 
the darker shade) 
 

Provider Model Resolution Forecast Hours Notes 

EMC NAM (parent) 
12 km 

(parent) 
84 (parent) 

Operational 12 km NAM parent 
model. 

EMC NAM (nest) 3 km 
60 hours (nest/00, 
06, 12, 18 hours) 

Features an hourly forecast and 
assimilation cycle for its 3 km 

CONUS nest. Uses hybrid 
3DEnVar and incorporates radar 
reflectivity into its assimilation 

system via a complex cloud 
analysis approach. 

RFCs 
Flash Flood 
Guidance 

5 km 
01, 03, 06, 12 and 

24 hour values  

CONUS mosaic grid created by 
compiling individual RFC-domain 

grids 

EMC HRRR 3 km 18 
High resolution, hourly updated, 
convection allowing nest of the 

Rapid Refresh (RAP) model 

EMC/NSSL 
NMMB 
ARW 

WRF-NSSL 
4 km 

48  
36 (WRF-NSSL) 

High resolution, convection 
allowing CONUS models 

OWP 
National Water 
Model (NWM) 

250 m 
1 km 

18 hours 
10 days 
30 days 

Hourly, uncoupled analysis and 
forecast system that provides 

streamflow for 2.7 million river 
reaches and other hydrologic 
information on 1km and 250m 

grids. 

NSSL/HDSC/NERFC
/CSU 

Precipitation 
Recurrence 

Data (Atlas 14) 
5 km 

6 and 24 hr  
(2, 5, 10, 25 and 

100 year intervals) 

Precipitation frequency 
estimates based on historical 

observations. 
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ESRL/GSD/EMC HRRRv3 3 km 

Hourly out to 36 
hours every 3 hours 

Hourly out to 18 
hours every  hour 

48 hour cycle at 12Z 

Experimental version of the 
HRRR, hourly updating, 

convection allowing 

ESRL/GSD 

HRRR 
Time-lagged 

Ensemble 
(HRRR-TLE) 

3 km 24 

Neighborhood ensembling 
approach calculated over a 3km 

grid of time-lagged HRRRv3 
deterministic members. 

Probabilities at a point refer to 
the chance of exceeding a given 

threshold somewhere with a 
40-km radius around that point. 

ESRL/GSD 
HRRR Ensemble 

(HRRRE) 
3 km 36 hours at 00Z 

9 members,full CONUS domain, 
stochastic 

EMC HREFv2 3 km 36 

Experimental version of HREF 
with 8 members which produces 
ensemble mean precip in three 

different forms, and 
precipitation probability of 

exceedance of QPF, FFG, and 
RIs. 

OU/CAPS 
WRF-ARW 

SSEFX 
3 km 60 

11-member (9 ARW+1 FV3+1 
control) ensemble forecast) 00Z 

cycle 

OU/CAPS FV3-CAPS 3 km 84 
Uses the FV3 dynamical core 
and Thompson microphysics 

Met Office UM 2.5 km 84 for experiment 

Convection allowing; 
sub-CONUS domain, 70 vertical 

levels up to 40km; UKMet 
boundary 

conditions/initialization 

EMC FV3-GFS 13 km 
84 for experiment 

 

3D hydrostatic dynamical core; 
vertically Lagrangian; GFS 

analyses initialization/physics 

GFDL FV3-GFDL 3 km 
84 for experiment 

 
Using the FV3 dynamical core 

and GFDL microphysics 

MDL NBMv3 2.5 km 
Hourly out 36 hrs 

3-hrly to Day 8 
6-hrly Days 8-10 

Runs every hour with 15 
different deterministic and 

ensemble systems 

 
 
 

Synoptic Overview and Highlights of Daily Impacts Throughout the Experiment 
 
FFaIR forecasters dealt with a wide variety of weather and flooding challenges over the course 
of the four week experiment ranging from a landfalling tropical system to monsoon activity in 
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the Southwest United States.  Figure 6 shows the 500 hPa mean geopotential height over the 
United States during the first half of FFaIR (June 19 - June 30) in panel 1 and second half (July 10 
- 21) in panel 3.  During the first two weeks (panel 1), a 500 hPa ridge dominated the western 
and southwestern United States with a broad trough in the central and eastern U.S. centered 
close to the Mississippi River Valley.  The western extent of a Bermuda high extended into 
Florida, creating a gap between the two areas of high pressure.  This gap is where, during week 
1, Tropical Storm Cindy formed and moved through making landfall near the Louisiana and 
Texas border, after which it lifted north through the Mississippi and Ohio River Valleys.  The 500 
hPa trough, which is evident by the anomalously low heights shown in Figure 6 panel 2, helped 
focus the remnant moisture from Tropical Storm Cindy as it moved farther north.  The 
beginning of week 2 was relatively less active, dominated by scattered, diurnal type 
thunderstorms in the early part of the week.  However, late in week 2, an organized Mesoscale 
Convective System (MCS) affected northwestern Missouri with 10-11 inches of rain and 
numerous flash flooding reports.  More organized flash flooding also occurred in New England 
out ahead of a low pressure system that was situated in eastern Canada late in the week. 
Figure 7 panel 1 displays 1000-500 hPa total column precipitable water anomalies over the first 
half of FFaIR.  The very high anomalies along the Gulf Coast can be linked to the moisture 
associated with Tropical Storm Cindy.  With the exception of the Southeast, most other areas of 
the country during the first half of FFaIR had near normal or anomalously low 1000-500 hPa 
total column precipitable water. 
 
In Figure 6, panel 3 and panel 4 show 500 hPa mean geopotential height and 500 hPa 
geopotential height anomalies, respectively during the second half of the FFaIR Experiment.  A 
broad 500 hPa ridge was firmly in place over Great Plains and Rocky Mountain regions of the 
US.  A trough was located in the eastern Pacific Ocean off the coast of Washington state and a 
second, weaker, trough was located over the Mid Atlantic and New England regions.  The 
strong ridge in the center of the country led to positive 500 hPa heights anomalies over much of 
the country during this time and was also a forcing mechanism for much of the weather during 
the second half of the experiment.  Numerous MCS events in week 3 followed the northern 
periphery of the ridge and traveled from the northern Mississippi River Valley down through 
the base of the trough across Ohio.  This led to repeated rounds of very heavy rainfall over the 
same areas.  Toward the latter half of week 3 the southwest monsoon flow increased on the 
western portion of the ridge bringing ample moisture and scattered very heavy rain to the 
Southwest almost daily.  Week 4 followed the same pattern with daily monsoon moisture in the 
Southwest and storm systems tracking along the northern periphery of the ridge, often 
originating in Minnesota or Wisconsin and travelling southeastward into the Ohio River Valley 
region.  The 1000-500 hPa total column precipitable water anomalies in Figure 7, panel 2 show 
anomalously high precipitable water over the Southwest United States as well as above average 
anomalies that stretch from Iowa eastward into Ohio, the Mid Atlantic region and New England. 
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Figure 6.  (1) 500 hPa mean geopotential height and (2) 500 hPa geopotential height composite 
anomalies for the first half of FFaIR covering June 19 - June 30, 2017.  (3) 500 hPa mean 
geopotential height and (4) 500 hPa geopotential height composite anomalies for the second 
half of FFaIR covering July 10 - 21, 2017.  Images generated from the NCEP/NCAR Reanalysis 
provided by NOAA/ESRL/Physical Sciences Division 
(http://www.esrl.noaa.gov/psd/data/composites/day/). 
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FIgure 7.  1000 - 500 hPa precipitable water composite anomalies for (1) the first half of FFaIR 
(June 19 - June 30, 2017) and (2) the second half of FFaIR (July 10 - 21, 2017).  Images generated 
from the NCEP/NCAR Reanalysis provided by NOAA/ESRL/Physical Sciences Division 
(http://www.esrl.noaa.gov/psd/data/composites/day/). 
 
The highest impact event in terms of loss of life during the 2017 FFaIR Experiment occurred 
during the weekend between weeks 3 and 4 on Saturday, July 15 when 10 people died due to a 
flash flood that occurred at a swimming hole in Cold Springs, AZ.  Although it was during the 
weekend, the FFaIR Day 3 ERO issued Thursday and the Day 2 ERO issued Friday would have 
covered the time period.  Monsoon moisture led to thunderstorms where 1.5 inches of rain fell 
within an hour about eight miles upstream of the canyon where the swimming hole was located 
causing 6 foot high floodwaters to rush through.  Figure 8 provides a closer view of the affected 
area.  Table 4 below summarizes the regions highlighted in each forecast over the course of the 
experiment and any significant events that occurred due to flooding. 
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Figure 8.  NWS QPE amounts valid from 1200 UTC 7/15/2017 through 1200 UTC 7/16/2017. 
Cold Spring, AZ represented by black star in the above figure. This is near the area in which there 
were 10 fatalities due to flash flooding.  
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Table 4. Experimental 6-HR PFF (18-00 UTC) and Day 2 and 3 ERO (12-12 UTC) forecasts issued 
during the 2017 FFaIR Experiment along with notable impacts. 

Forecast 
Valid End 

Date 

Valid Time (UTC) 
(18 - 00 PFF) 

(12-12 Day 2/3 
ERO) 

Forecast Area Notes 

6/20/2017 18 - 00 Northeast 
Numerous flash flood LSRs in New 
Hampshire and flash flood warnings 
throughout the New England area. 

6/21/2017 
18 - 00 Southeast 

Flash flood LSR and swift water 
rescue reports in and around the city 
of Atlanta, GA. 

12 - 12 Southeast and 
Southwest  

6/22/2017 

18 - 00 Gulf Coast Outer rainbands and moisture 
associated with Tropical Storm Cindy. 

12 - 12 
Southeast/Gulf Coast 
and central US with 
focus over Iowa 

 

6/23/2017 
18 - 00 Upper Great Lakes 

region, NW PA 

1 dead in Indiana County, PA. 
Railcars washed off tracks by flood 
waters. 

12 - 12 Upper Great Lakes 
region, Southeast 

Tropical Storm Cindy in the 
Southeast. 

6/24/2017 

18 - 00 Ohio River Valley 

Numerous reports of flash flooding 
through Kentucky, southern Ohio, and 
southwest PA associated with 
remnants of Cindy and a frontal 
boundary. 

12 - 12 
Central Gulf Coast 
states, Ohio River 
Valley, Mid-Atlantic 

 

6/25/2017 12 - 12 Southeast, New 
Mexico  

6/26/2017 12 -12 Southeast, New 
Mexico  

6/27/2017 18 - 00 Florida Isolated flood LSRs around the 
Jacksonville, FL area. 

6/28/2017 
18 - 00 No Forecast Issued  

12 - 12 Northern central Plains  

6/29/2017 18 - 00 Iowa/Illinois/Wisconsin  
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12 - 12 
Central Plains/Upper 
Great Lakes, western 
Gulf Coast 

 

6/30/2017 

18 - 00 No Forecast Issued  

12 - 12 
Central Plains, 
Southeast, Upstate 
New York 

8-11 inches of rain in NW Missouri. 
Numerous reports of water rescues. 

7/1/2017 

18 - 00 Indiana/Ohio, New 
England 

Road closures due to high water in 
both Northeast Ohio as well as 
Vermont. 

12 - 12 
South-central Plains, 
Southeast, and the Mid 
Atlantic/New England 

 

7/2/2017 12 - 12 
Eastern New Mexico, 
Southeast, and New 
England 

Several roads washed out in 
Vermont. In New Hampshire, high 
flood waters stranded and displaced 
campers. 

7/3/2017 12 - 12 Central Plains  

7/11/2017 18 - 00 Ohio  

7/12/2017 

18 - 00 Ohio River Valley Numerous roads flooded just south of 
Indianapolis, IN. 

12 - 12 
North Central Plains 
into Ohio River Valley, 
Louisiana, Southwest 

Numerous reports of flooding in 
Milwaukee, where manhole covers 
burst due to amount of water and in 
North Chicago. 

7/13/2017 
18 - 00 Western Great Lakes, 

New England 

Reports of street flooding and cars 
stuck in high water in and around the 
Boston, MA area. 

12 - 12 Great Lakes/Ohio, 
Southwest  

7/14/2017 

18 - 00 
Eastern Ohio, Mid 
Atlantic, southern New 
England 

Street flooding in southern Rhode 
Island. Numerous reports of flooding 
in Ohio, including a high water rescue 
in Hebron, OH. 

12 - 12 

Southwest, Central 
Plains, Ohio River 
Valley, Mid Atlantic, 
New England 

 

7/15/2017 18 - 00 
Arkansas, Kentucky, 
West Virginia, 
Delaware, South 

Homes evacuated, cars stranded in 
high water in Vestal, NY. Two cars 
and bus stranded in high water near 
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Central New York Newark, DE. No injuries. 

12 - 12 

Southwest into the 
northern Southeast, 
Mid Atlantic, and 
central New England 

 

7/16/2017 12 - 12 Southeast, 
Southwest/Colorado 

10 killed in flash flood at swimming 
hole in Cold Springs, AZ. 

7/17/2017 12 - 12 Southeast, Southwest  

7/18/2017 18 - 00 
Southern South 
Carolina/Georgia and 
northern Florida 

 

7/19/2017 
18 - 00 Minnesota, Wisconsin, 

Upper Michigan  

12 - 12 Northern central 
Plains, Southwest  

7/20/2017 

18 - 00 Southwest Minor localized flooding around Las 
Vegas, NV. 

12 - 12 
Southwest, northern 
Mississippi River 
Valley 

Widespread flooding in southeastern 
MN and NW Wisconsin. Mudslides 
covered highways and 100s of people 
evacuated from homes in Arcadia, 
WI. 

7/21/2017 

18 - 00 Southwest About 50 homes affected by flooding 
in Salem, UT. 

12 - 12 
Southwest, Rocky 
Mountains, north 
central Plains 

 

7/22/2017 

18 - 00 Minnesota, Wisconsin, 
Iowa, Illinois  

12 - 12 

Southwest, northern 
Mississippi River 
Valley, Ohio River 
Valley 

Numerous areas of flooding reported 
in NE Iowa. Iowa Highway 93 closed 
in several places due to high water. 

7/23/2017 12 - 12 Southwest, Ohio River 
Valley 

Two homes reportedly swept away in 
Augusta, KY. Street flooding in Ohio. 

7/24/2017 12 - 12 

Southwest, Ohio River 
Valley, Mid Atlantic, 
southern New 
England, western Gulf 
Coast 

17 hikers stranded by flash flooding in 
Arizona. Roads flooded and cars 
stranded in Middletown, PA where 
over 4 inches of rain fell in one hour. 
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4.  Atmospheric Guidance Results 
 
Days 2 and 3 Deterministic Guidance Performance 
 
Several deterministic models were featured during the 2017 FFaIR experiment both for forecast 
guidance and evaluation.  A primary science goal was to determine the utility of longer-range, 
high-resolution convective-allowing models for improving the prediction of heavy rains that 
may lead to flash flooding.  
 
The participants were presented with a display of Day 2 24-hour QPFs (Figure 9) and Day 3 
24-hour QPFs (Figure 10) along with the MRMS QPE for that same time period  (see Verification 
section for details).  Subjective scores and comments were collected for available guidance 
each day during the experiment. 
 

 
Figure 9. 24-hour QPF forecasts subjectively evaluated for Day 2 using 24-hour NSSL QPE.  Day 2 
evaluation included the NAM Nest, UM, HRRRv3, FV3-CAPS and FV3-GFDL. 
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Figure 10. 24-hour QPF forecasts subjectively evaluated for Day 3 using 24-hour NSSL QPE.  Day 
3 evaluation included the UM, FV3-CAPS, FV3-GFDL, FV3-GFS. 
 
Day 2 Results 
 
Figure 11 is the box plot of the subjective evaluation collected for Day 2 deterministic 24-hour 
QPF guidance.  The NAM Nest and the HRRRv3 received the highest average scores from 
participants, but as seen in the diagram, the NAM Nest scores had much greater spread than 
the HRRRv3. The FV3-CAPS scored the lowest.  
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Figure 11. Box plot of the subjective scores for the Day 2 24-hour QPF from the NAM Nest, UM, 
HRRRv3, FV3-CAPS, and FV3-GFDL. 
 
The NAM Nest received an average score of 6.03 out of 10 over a total of 152 collected scores 
with a standard deviation of 1.40.  Overall, participants liked the NAM Nest Day 2 guidance 
expressing that despite typical CAM predictability issues with details, especially for more 
marginal events and convective outbreaks, the forecast spatial extent and magnitude captured 
the general shape and provided a reasonable representation of the rainfall.  Noteworthy is how 
compared to previous years, “over done” and “magnitude too high” were rarely noted.  In fact, 
a large number of experiment days noted areas of the CONUS where the NAM Nest had too low 
magnitude as compared to verification.  
 
The Day 2 Unified Model (UM) emerged as the preferred guidance for capturing the spatial 
pattern of the precipitation and useful magnitudes early in the experiment, most likely due to 
the predominance  of more synoptically-forced events such as Tropical Storm Cindy. But it 
quickly became less favorable as it suffered from an overall low bias, noisy QPF fields that were 
scattered in nature, phase errors, and magnitudes that were too high where rain actually 
occurred (especially along the Gulf Coast). The spatial and magnitude inconsistencies decreased 
forecaster confidence in the UM guidance.  The UM achieved an average score of 5.17 out of 10 
with a standard deviation of 1.50 for its Day 2 QPF guidance. 
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With an average score of 6.03 out of 10 and a standard deviation of 1.04, the Day 2 HRRRv3 
was one of the higher-scoring deterministic models, alongside the NAM Nest.  However, its 
average was based only on a total of 89 scores (available 13 forecast days out of 20 possible) 
whereas the NAM Nest had a total of 159 scores (see Table 2 in the Verification section for 
more details). Additionally, the HRRRv3 was evaluated at 48 hours as opposed to the full 60 
hours available in the rest of the Day 2 guidance, which may have impacted its scores. The 
HRRRv3 was often praised for its capture of the general precipitation pattern over the CONUS. 
Only on a few days did the HRRRv3 struggle to advance the synoptic pattern effectively. 
Conversely, participants often noted a low bias of precipitation magnitude for most events.  As 
with most of the CAMs, the HRRRv3 also consistently produced too much precipitation amid 
the Gulf Coast states during the one tropical event during the 2017 FFaIR. 
 
The FV3-GFDL for Day 2 acquired daily comments noting a low bias of precipitation over the 
CONUS and a misleading high bias for strongly-forced synoptic events such as tropical systems 
or well-defined frontal boundaries.  The FV3-GFDL struggled to organize precipitation for both 
synoptic (mesoscale) and more marginal convective events resulting in general scatter, and 
displacement errors in precipitation maxima were often noted.  The participants struggled to 
find utility in the guidance without consulting other CAM precipitation to identify any hints at a 
pattern.  The FV3-GFDL achieved an average score of 4.85, with a standard deviation of 1.69. 
 
The Day 2 FV3-CAPS achieved an average score of 4.41 with a standard deviation of 1.24.  The 
FV3-CAPS produced daily concerns about not generating enough precipitation nor having any 
identifying mesoscale nor convective patterns.  On days when the guidance did  capture the 
general precipitation pattern, the result was misleading in areal coverage and amounts and 
therefore difficult to trust.  The lack of spatial extent, presence of precipitation areas that were 
too narrow, extreme low bias, and random QPF where no present discernible forcing present 
were noted by participants in their daily comments.  The FV3-CAPS was rarely a model that 
provided utility in forecast activities due to these errors which decreased forecaster confidence 
in the guidance. 
 

 

Day 3 Results 

 

Figure 12 is the box plot of the subjective evaluation scores collected for Day 3 deterministic 
24-hour QPF guidance.  The Unified Model (UM) received the highest overall subjective score 
for Day 3 and the FV3-CAPS the lowest.  The FV3-GFDL had the greatest spread in scoring Day 3 
QPF over the experiment. 
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Figure 12. Box plot of the subjective scores for the Day 3 24-hour QPF from the UM, FV3-CAPS, 
FV3-GFDL and FV3-GFS. 
 

With an average score of 5.64 out of 10 and standard deviation of 1.52, the UM performed 
slightly better on Day 3 than on Day 2.  Participants felt the precipitation from the UM on Day 3 
was often a bit more organized and captured the general pattern.  Spatial extent was more 
useful than on Day 2, although magnitude still struggled with a significant low bias over the 
entire domain and localized convection associated with strong forcing mechanisms was often 
missed. 
 

For Day 3, the FV3-GFDL achieved an average score of 4.65 out of 10 with a standard deviation 
of 1.77.  Similar to its performance on Day 2, the FV3-GFDL continued to struggle with 
producing enough precipitation to glean meaningful patterns to contribute to the forecast 
process on Day 3.  The low bias and disorganized, scattered QPF  were noted as often occurring 
over the whole CONUS.  For large synoptic-scale events and well-initialized convection, the 
FV3-GFDL produced a recognizable pattern that was useful to the forecast process. But the run 
to run inconsistencies in the QPF pattern and displacement errors did not allow the forecasters 
to have confidence in the guidance day-to-day (Figure 13). 
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The FV3-CAPS precipitation fields attempted to capture the general pattern of QPF and 
responded best with strong synoptic forcing, as was the case with a string of low pressure 
systems riding along a stationary boundary on July 22, 2017.  But it often struggled to generate 
organized precipitation over the CONUS when the pattern weakened, as shown just a day later 
in Figure 13.  A significant low bias in both areal extent and magnitude with disorganized and 
scattered, cells were often the resulting guidance.  Many events were completely missed and 
for those which the FV3-CAPS derived structure were displaced, too localized and overdone in 
magnitude.  Participants struggled to have confidence in this guidance on Day 3, scoring it an 
average of 4.6 out of 10 with a standard deviation of 1.44. 
 

 
Figure 13. An example of the MRMS QPE verification along with the 24-hour QPF showing a low 
bias (red polygons) apparent in both the FV3-GFDL and FV3-CAPS as well as disorganized scatter 
(yellow polygons) along the Gulf Coast.  Day 3 forecast valid 12Z July 23, 2017. 
 
Achieving an average score of 5.13 out of 10 with a standard deviation of 1.33, the Day 3 
FV3-GFS at its 13-km resolution received many positive comments during the FFaIR experiment, 
mostly for accuracy of spatial extent and capturing the location of where heavier precipitation 
was expected to occur.  Due to its lower resolution, participants did remark often on the low 
bias of the maximum precipitation, the tendency to “broad-brush” areal coverage, and the 
struggle to capture convection.  Displacement errors of heavier precipitation were noted 
several times during the experiment, and were most often to the north. 
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Conclusions 
 
Objective verification was performed on the 0.5” and 1” QPFs for Day 2 and Day 3 on all of the 
deterministic models available in the 2017 FFaIR Experiment using MODE (see the Verification 
section and Appendix C for MODE settings).  The critical success index (CSI), which combines 
the probability of detection (POD) and the false alarm ratio (FAR), and frequency bias were 
calculated and graphed onto performance diagrams (Figure 14-17).  
 

 

Figure 14.  Day 2 0.5” Deterministic QPF Performance Diagram including the NAM Nest, Unified 
Model (UM), FV3-GFDL, FV3-CAPS, and FV3-GFS.  
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As shown in the objective analysis of the Day 2 0.5” threshold, the HRRRv3 had the best bias 
score of 0.97 and the UM had the best CSI at 0.19.  All of the models fell between 0.17 and 0.2 
for the CSI mean and 0.75 and 0.97 for the bias means, indicating under-forecasting of the QPF 
at this threshold for Day 2.  
 
 

 

Figure 15.  Day 2 1” Deterministic QPF Performance Diagram including the NAM Nest, Unified 
Model (UM), FV3-GFDL, FV3-CAPS, and FV3-GFS.  
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At the 1” QPF threshold for Day 2, the models tended to fall off in skill with the UM as the 
exception.  The UM had a CSI of 0.12 and a bias of 1.1, making it  the best performer.  The 
FV3-GFS scored the lowest in the performance evaluation with a CSI of 0.06 and bias of 0.45.  
 

 

 

Figure 16.  Day 3 0.5” Deterministic QPF Performance Diagram including the Model (UM), 
FV3-GFDL, FV3-CAPS, and FV3-GFS.  
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As shown in the objective analysis of the Day 3 0.5” threshold, the UM again outperformed the 
other deterministic models with a CSI of 0.16 and bias of 0.87.  All of the models fell between 
the CSI mean of 0.14 and 0.16, and bias mean of 0.76 and 0.87 which is indicative of slightly 
more under-forecasting than Day 2. This low bias is also reflected often in the subjective 
comments.  Both the FV3-CAPS and FV3-GFDL tended to perform similar to each other. 
 
 
 

 

Figure 17.  Day 3 1” Deterministic QPF Performance Diagram including the Model (UM), 
FV3-GFDL, FV3-CAPS, and FV3-GFS.  
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At the 1” QPF threshold for Day 3, the models again fell off greatly in skill from the 0.5” 
threshold.  Most extreme was the FV3-GFS with a CSI of 0.05 and a bias of 0.55.  The UM again 
objectively performed best at this threshold with a CSI of 0.09 and bias of 1.01.  At this 
threshold, the FV3-CAPS and FV3-GFDL again performed similar to each other. 
 
Taking all of the MODE performance averages over all of the available models, it can be 
determined that overall, the models are more skillful on Day 2 than Day 3. The average of all 
models on Day 2 for the 0.5” QPF threshold is 0.18 for the CSI mean and 0.83 for bias, and at 
the 1” threshold 0.09 for the CSI mean and 0.93.  The average of all models on Day 3 for the 
0.5” QPF threshold is 0.16 for the CSI mean and 0.80 for bias, and at the 1” threshold 0.08 for 
the CSI mean and 0..81 for bias.  
 
A comparison of the subjective and objective analysis for the Day 2 and 3  forecasts reveals 
some disagreement as to which model was the best. Objective verification showed the  UM 
achieved the highest scores for the Day 2 forecast at both 0.5 and 1.0 inch thresholds, however, 
it finished 3rd out of 5 in the subjective evaluation of the guidance.  The differences in scores 
among the models are likely due to the common basis of subjective ratings on areas of highest 
threat for flooding rains, while the objective statistics reflect the entire CONUS.  
 
Ensemble Guidance Performance and The National Blend of Models 
 
Testing the Blended Mean Approach from CAM Ensembles 
 
During the 2016 FFaIR Experiment, both the probability matched mean (PMM) and 
conventional ensemble mean (CM) for QPF were compared between two CAM ensembles. 
General feedback overall showed that participants favored the PMM over the CM, however 
there were several cases where the PMM proved to be too heavy and thus misleading.  In 
response to the mixed feedback, the 2017 FFaIR Experiment introduced a blended mean (BM) 
in which the PMM and the CM are averaged together, each with equal weighting (50%).  
 
The BM for QPF was evaluated from three different CAM ensembles:  the HREFv2, the HRRRE, 
and the SSEFX.  Each was an 18-24 hour forecast from the 00Z cycle of six hour QPF valid from 
18-00 UTC over a limited domain, typically the same domain participants had chosen for the 
PFF forecast.  Participants provided a subjective ranking from 1 (very poor) to 10 (very good) as 
well as commented on, in particular, how well the BM magnitude matched the QPE verification. 
It should be noted that for the SSEFX, instead of using the traditional PMM in the BM 
calculation, a localized probability matched mean was used (LPM).  More information on the 
LPM can be found within the detailed ensemble description of the SSEFX in Appendix B.  Figure 
18 shows an example of how the evaluation was presented to the participants. 
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Figure 18.  Four panel display showing MRMS QPE (top left), BM from SSEFX (top right), BM 
from HRRRE (bottom left) and BM from the HREFv2 (bottom right) valid 18 June 23 to 00 UTC 
June 24, 2017. 
 
Figure 19 displays box plots showing statistics of the subjective verification scores for the 
blended mean evaluation from each ensemble.  Each of the three models scored similarly with 
the SSEFX having the highest average subjective score of 6.73, with a median of 7 and standard 
deviation of 1.32.  The HRRRE’s average subjective score was 6.57 with a median of 7 and a 
standard deviation of 1.49, and the HREFv2’s average subjective score was 6.02 with with a 
median of 6 and a standard deviation of 1.53.  It should be noted that the SSEFX was the only 
model of the three to use a local probability matched mean rather than the traditional PMM in 
the blended mean.  More testing will be required to determine whether the LPM method 
improves on the PMM and results in higher scores.  Also, due to data availability issues during 
the experiment, the HREFv2 had 39 less overall scores recorded than the SSEFX and 13 less 
overall scores recorded than the HRRRE.  The HRRRE had 16 less overall scores recorded than 
the SSEFX.  All three of these subjective scores from this year’s three ensembles are higher than 
the overall subjective ratings for the individual PMM and CM from the two ensembles tested 
during the 2016 FFaIR Experiment. 
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Figure 19. Box plot of the subjective scores for the SSEFX, HRRRE, and HREFv2 6 hour blended 
mean QPF over the course of the experiment.  Red plus symbols denote outliers. 
 
Figure 20 shows a Roebber Performance Diagram for all of the six hour ensemble blended 
means cumulatively over the entire experiment at 0.5 inch threshold.  WPC QPF for the same 
Day 1 18-00 UTC period is also displayed.  The HRRRE and HREFv2 had very similar CSI values of 
0.15 and 0.14, respectively, however the HRRRE had a better frequency bias of 1.04 when 
compared to the HREFv2, which was 0.81.  The SSEFX had a better bias (0.96) than the HREFv2 
but a worse CSI value (0.12).  At the one inch threshold, shown in Figure 21, all three models 
had a CSI value below the 0.10 threshold.  The frequency bias at the one inch threshold for the 
HRRRE was 1.56 and the SSEFX was 1.04.  The HREFv2, however, had a frequency bias below 
one at 0.74 for the one inch threshold. 
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Figure 20.  Roebber Performance Diagram showing skill of the 6 hour blended mean forecast for 
0.5 inch QPF from the HREFv2 (dark blue), SSEFX (magenta), and HRRRE (cyan). 
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Figure 21.  Roebber Performance Diagram showing skill of the 6 hour blended mean forecast for 
1 inch QPF from the HREFv2 (dark blue), SSEFX (magenta), and HRRRE (cyan). 
 
As the subjective scores reflect, feedback for the ensemble BMs was generally positive.  Only 
five of the days during the experiment did the average subjective score for the majority (2 out 
of 3) models equal a 5 or below.  On those days, the most common problem was usually that 
the QPF was significantly displaced from the observed QPE for the forecast to have any positive 
value.  Aside from those days, participants were impressed with location and spatial coverage 
of the QPF for the majority of the forecasts from all three ensembles.  Magnitudes varied from 
being overdone or underdone on most days but usually not enough for the forecast to lose its 
value.  Future work in testing the blended mean include more direct comparisons of the 
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components in an experimental setting, experimenting with weighting the PMM and CM 
differently, and examining the impact of the LPM more closely. 
 
Ensemble QPF Probability Results and Comments 
 
In addition to the blended means, participants also evaluated the six hour, 40 km neighborhood 
probability of one-half inch and one inch of QPF occurring within the 18-00 UTC time period 
over a limited domain from the HREFv2, SSEFX, HRRR-TLE, and HRRRE.  All probability forecasts 
were 18-24 hour forecasts initialized from a 00 UTC cycle.  The probabilities were compared 
with six hour MRMS QPE and participants provided a subjective ranking from 1 (very poor) to 
10 (very good) as well as comments focused on the representativeness of the probabilities 
(whether they felt the values were too high or low based on the magnitude of the event) as 
well as the overall coverage.  Figure 22 shows an example of how the six hour probability of one 
inch of QPF evaluation was shown to participants. 
 

 
Figure 22.  Five-panel display showing 6 HR MRMS QPE (top left) with one inch and above in 
blue and anything below an inch in green, HREFv2 (top middle), SSEFX (top right), 
HRRR-TLE(bottom middle), and the HRRRE (bottom right).  All display a 40 km neighborhood 
probability of 1 inch QPF in 6 hours. 
 
Due to data availability issues during the experiment, the HREFv2, HRRR-TLE, and HRRRE had 
between 87 and 94 subjective scores, whereas the SSEFX was scored subjectively 120 times. 
During the first two weeks of the experiment, the HRRRE, SSEFX, and HREFv2 were using 
different post processing techniques and this caused the probabilities from the HRRRE to look a 
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lot different than the other three.  The HRRRE had no Gaussian smoother, the SSEFX was using 
a 40 km Gaussian smoother, and the HREFv2 used a 25 km Gaussian smoother.  Because the 
HRRR-TLE is a time-lagged ensemble, the probabilities are post processed differently.  The 
HRRR-TLE probabilities are the fraction of bias-corrected QPF grid points in a 100-km radius that 
have a threshold exceedance somewhere within 40 km, averaged across the three members. 
The results behave similarly to  running a ~50-100km Gaussian filter on a grid of 40km 
neighborhood probabilities.  Figure 23 shows an example of how the different post processing 
Gaussian smoothers can affect the visualization of the probabilities using the HRRRE as an 
example.  Starting week 3, the post processing was normalized between those three 
ensembles; a 25 km Gaussian smoother was applied to the HRRRE, SSEFX, and HREFv2 during 
the post-processing of the probabilities.  The HRRR-TLE post processing remained the same.  In 
addition to the smoothing differences, there were also noticeably different atmospheric 
regimes during the first and second half of FFaIR.  The first week of the experiment was 
dominated by Tropical Storm Cindy and a well defined synoptic frontal zone.  The second week 
was not as active during the 18-00 UTC forecasts periods on which the ensembles were scored. 
Weeks three and four were mainly focused on monsoonal moisture as well as smaller, 
mesoscale convective systems.  Due to these  differences, subjective scores will be split 
between the first and second half of the experiment for this evaluation. 
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Figure 23. Different post processing Gaussian smoothing applied to 6 hour probability of 0.5 
inch QPF from the HRRRE.  No smoothing (top left), 6 km Gaussian smoothing (top right) 25 km 
Gaussian smoothing (bottom left), and 40 km Gaussian smoothing (bottom right). 
 
Figure 24 shows the average subjective scores each model mean received each week over the 
course of the experiment.  For all ensembles, the subjective scores for the half inch and the one 
inch threshold will be averaged as there were no significant differences between the two for 
any of the four ensembles.  
 

 
Figure 24.  Average subjective scores for the 6 hour blended mean QPF from the HREFv2, SSEFX, 
HRRR-TLE, and HRRRE for week 1 (blue), week 2 (red), week 3 (yellow), and week 4 (green).  
 
The HREFv2 had an average subjective score of 6.60 for the first half (weeks 1-2) and 5.09 for 
the second half (weeks 3-4) out of a possible 10.  The HREFv2 was not available for all but one 
day of week 4, so the average of 1.40 represents just five participant scores for one case.  The 
HREFv2 used a 25 km Gaussian smoother for both halves of the experiment, so the drop in 
scores in the second half of FFaIR could be attributed to a more unpredictable weather pattern 
and also fewer scores overall scores due to data availability issues.  
 
The SSEFX had an average subjective score of 7.15 during the first half of the experiment and a 
5.66 in the second half out of a possible 10.  During weeks three and four, the SSEFX went from 
a 40 km to a 25 km Gaussian smoother.  It is difficult to draw conclusions as to the cause of the 
decrease in scores for this ensemble without further testing as both the smoothing radius 
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changed and weeks three and four presented more challenging weather patterns to model as 
mentioned previously.  
 
The HRRR-TLE had an average subjective score of 7.03 during the first half of the experiment 
and a 5.31 in the second half out of a possible 10.  Despite no post-processing changes being 
made to the HRRR-TLE during the experiment, a 1.72 point drop was still observed in subjective 
scores. 
 
The last ensemble, the HRRRE, had an average subjective score of 4.65 during the first half of 
the experiment and a 5.66 in the second half out of a possible 10.  No Gaussian smoother was 
applied to the post processing during the first half of the experiment and a 25 km smoother 
was applied during the second half.  The subjective scores increased a full point and this was 
the only ensemble to increase from the first half to the second half.  Having no smoothing in 
the post processing for these types of probabilities led to very sharp cut-offs in the probability 
field, as can be seen in the top left of Figure 23.  Participants commented that this type of 
display is really difficult to use for a forecast.  This exercise shows that even if an ensemble 
system is performing properly, the visualization of the output can significantly affect how the 
forecast is perceived by forecasters.  
 
Outside of the post processing issues already detailed, general feedback and comments were 
positive, much like for the blended mean QPF from these same ensembles.  Participants noted 
many times throughout the experiment that the SSEFX probabilities never increased above the 
85-90% threshold.  This was noticeable during many events where the other ensembles all 
would have probabilities of 95% or above.  Subjectively, participants felt the probabilities were 
often too high for most of the cases across all the ensembles.  Recognizing that a 40 km 
neighborhood probability approach will not show small details in convection, most participants 
viewed the overall spatial coverage of the probabilities from the ensembles positively for most 
cases.  
 
HREFv2 Point Probability Schemes Results and Comments 
 
Two different types of fractional coverage approaches for the generation of point probabilities 
were evaluated and scored subjectively each day alongside traditional point probabilities each 
day during the experiment.  The first method expands the traditional point probability 
calculation to cover a 100-km radius around a given point, known as the “fractional probability 
scheme” in the experiment.  The second method was based upon ensemble agreement scale 
(EAS) similarity criteria outlined in Dey et al. (2016) and varies the neighborhood radius size 
between 10 km and 100 km according to member to member similarity criteria.  This method 
was referred to as the “EAS probability scheme” in the experiment.  Both these schemes and 
the traditional point probabilities were derived from the HREFv2 ensemble system.  More 
details on the two probability methods can be found in Appendix B under the HREFv2 
description. 
 
Each day the three probability schemes for one-half inch of QPF over six hours were displayed 
to the participants over the same limited domain and time range, 18-00 UTC, as the PFF 
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forecast.  Six hour MRMS QPE was used for verification and HREFv2 ensemble mean QPF (after 
week 2, when available) was also plotted as a reference.  Participants would then subjectively 
rank each scheme on a scale of 1 (very poor) to 10 (very good) based on how well the 
probabilistic values represented what happened and comment on the utility of each 
probabilistic scheme.  Figure 25 shows an example of how this question was presented to the 
participants during subjective evaluation. 
 

 
Figure 25.  A four panel image showing six hour MRMS QPE filtered for half inch and above 
(blue) and all amounts below (green) in the top right, HREFv2 traditional point probabilities top 
middle, HREFv2 fractional probability scheme top right, and the HREFv2 EAS probability scheme 
bottom middle. 
 
Figure 26 shows a box plot of all the subjective scores for the experiment for all three point 
probability methods.  The traditional point probabilities subjectively had the highest average 
score of 6.44 out of 10 with a standard deviation of 1.83.  Out of the two experimental 
schemes, the EAS method has the highest average score, a 6.31 out of 10 with a standard 
deviation of 1.69.  Finally, the fractional scheme with a fixed 100 km radius had the lowest 
average subjective score at 5.42 out of 10 with a standard deviation of 1.31. 
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Figure 26.  Box plot of the subjective verification scores of the three HREFv2 point probability 
schemes including the traditional point probabilities, fractional scheme, and EAS scheme over 
the entire experiment. 
 
Evaluating the three different point probability schemes generated a lot of discussion each day. 
Because the probabilities were ultimately reliant on the underlying forecast from the HREFv2, 
the comments focused more on how the three different point probability methods visually 
represented the probabilistic field and the utility they provided to a forecaster in the 
forecasting process.  The traditional point probabilities that had no filters applied were 
generally favored due to the amount of detail provided within the probability field.  The detail 
was usually preferred by the forecaster participants compared to the model developers that 
participated.  They were particularly useful in situations that showed smaller scale convection, 
such as diurnally driven or sea-breeze based convection that occurred often in the Southeast. 
In these cases, the traditional point probabilities typically had some signal whereas the other 
two schemes may have had no signal.  The fractional coverage scheme with a fixed radius of 
100 km was generally the least favored because participants felt that it smoothed the 
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probability field too much and the probabilities were often much too low in most cases.  The 
EAS probability scheme garnered positive feedback from participants as the variable filter, 
based on model agreement, allowed for more detail in certain situations that was often 
appreciated  by the forecasters.  Both filtered fields were preferred by forecasters as a tool to 
use when forecasting QPF amounts as opposed to areas of flash flooding, as the traditional 
point probability field was described as too noisy for drawing QPF contours.  A suggestion from 
feedback received is to reduce the lower bound radius of the EAS scheme below 10 km in order 
to produce a compromise between the extreme detail of the traditional point probabilities and 
the more smoothed fields of the filtered options.  Figure 27 shows two examples of the 
fractional coverage and EAS probability schemes, one (panels 1 and 2) where there is very little 
difference between the two and a second (panels 3 and 4) where the EAS provides more detail 
compared to the fractional, fixed 100 km radius. 
 

 
Figure 27. HREFv2 probability for a half inch of precipitation over 6 hours using the fractional 
probability scheme (1) and EAS probability scheme (2) valid at 00 UTC on June 23, 2017 and the 
fractional probability scheme (3) and EAS probability scheme (4) valid at 00 UTC on June 21, 
2017. 
 
National Blend of Models, Version 3 
 
The National Blend of Models version 3 (NBMv3) was evaluated during the 2017 FFaIR 
Experiment.  At the time of the experiment, the parallel version of NBMv3 was used as it was 
not yet operational.  More information on the NBMv3 can be found in Appendix B.  Hours 18-24 
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of the 6-hour QPF forecast from the 00Z cycle of the NBMv3 was subjectively evaluated on a 1 
(very poor) to 10 (very good) scale.  Participants were encouraged to comment on the overall 
magnitude and spatial extent of the QPF.  Figure 28 shows an example of the evaluation. 
 

 
Figure 28.  Two panel display showing 6-hour MRMS QPE on the left and 6-hour NBMv3 QPF on 
the right valid at 00 UTC on June 24, 2017. 
 
Figure 29 shows a box plot of all the subjective scores for the 6 hour QPF from the NBMv3 over 
the course of the experiment.  The NBMv3 had an average subjective score of 5.41 out of 10, a 
median of 5, and a standard deviation of 1.69.  Figure 30 shows a distribution of how many of 
each individual score was assigned to the NBMv3 during each of the four weeks.  
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Figure 29. Subjective scores for the 6 hour QPF from the NBMv3 over the 2017 Experiment. 

 
Figure 30.  The individual subjective score distribution over all four weeks of FFaIR for the 
NBMv3.  Week 1 scores are blue, week 2 scores red, week 3 scores are yellow, and week 4 scores 
are green. 
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Figure 31 shows a Roebber Performance Diagram for the skill of the half inch, 6 hour QPF 
forecast from the NBMv3 over the course of the experiment.  The CSI value for the half inch 
threshold was 0.08 and there was a low frequency bias of approximately 0.45.  At the one inch 
value shown in Figure 32, the CSI value (0.03) and frequency bias (0.24) are much lower for the 
NBMv3. 
 

 
Figure 31.  Roebber Performance Diagram showing the skill of the half inch, 6 hour QPF forecast 
from the NBMv3 over the whole experiment. 
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Figure 32.  Roebber Performance Diagram showing the skill of the one inch, 6 hour QPF forecast 
from the NBMv3 over the whole experiment. 
 
According to the participants, the most common problem with the NBMv3 QPF was a low bias 
for the majority of the cases.  It did do quite well with both magnitude and spatial extent during 
the first week of the experiment handling the moisture of Tropical Storm Cindy.  However, 
during weeks 3 and 4, especially when the cases were more mesoscale in nature such as 
Southwest monsoon moisture or MCS activity, participants often noted the QPF was too low 
when compared to observations.  This difference can be seen in Figure 30 where scores of 7, 8, 
and 9 were more often given in weeks 1 and 2 compared to weeks 3 and 4.  However, the 
overall shape and spatial coverage was often quite good and gave an indication that there 
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would be precipitation in areas that received rain.  Figure 33 shows an example where the 
NBMv3 was considered underdone. 
 

 
Figure 33.  6-hour MRMS QPE (left) compared to 6-hour NBMv3 QPF (right) both valid at 00 UTC 
on July 14, 2017.  Circles highlight areas where the NBMv3 (right) had lower QPF values than 
what was observed in the MRMS QPE (left). 
 

5.  Hydrologic Guidance Results 
 
Experimental National Water Model Products 
 
Several experimental products derived from the National Water Model were available to 
participants to use during the forecast activities.  At the end of each week, the participants 
were asked to provide written feedback about the products collectively.  
 
1.  High Flow Potential 
 
The High Flow Potential product depicts areas where current streamflow anomalies are in the 
Moderate, High, and Very High stages.  This product forces the underlying water model using 
observational rainfall data sets and is updated every hour.  The streamflow anomalies are 
calculated from climatological annual average flow values provided by NHDPlus dataset. The 
idea is to draw attention to areas over which there is high flow/flow above bankfull conditions 
for situational awareness. 
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Figure 34. Experimental National Water Model High Flow Potential product valid 11Z on June 
21, 2017. 
 
Many participants felt that the High Flow Potential product could be used as another situational 
awareness tool, but that overall it did not provide any information that was new or not obvious 
from other guidance.  This high-flow stream information would be more valuable if it were 
combined with current radar estimates and indications of areas currently under flash flood 
warnings. 
 
2.  High Flow Probability 
 
The High Flow Probability product from the National Water Model is informed by an ensemble 
of time-lagged operational HRRR forecasts of quantitative precipitation and updates every 
hour.  The first attempt at a probabilistic National Water Model product, it depicts the 
probability of streams exceeding high flow within the next 6-8 hours.  
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Figure 35. Experimental National Water Model High Flow Probability at the outmost zoom level 
displays clusters of river segments with probabilities > 0.  
 

 
Figure 36. Experimental National Water Model High Flow Probability gives high resolution detail 
of the streams that are probabilistically forecast to exceed high flow, color coded in increments 
of 20%, valid 11Z on June 21, 2017. 
 
Participants overall agreed that probabilistic output from the National Water Model would 
produce the most valuable forecast information from its guidance.  However, this 
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next-6-to-8-hour High Flow Probability  product presented inconsistencies among the other 
products offered.  For example, the probabilities of high flow tended to be low in areas where 
the High Flow Potential and deterministic short-range Time to High Flow (next section) showed 
a strong response for high flow.  Although more spread in the guidance is preferred, additional 
concerns were being limited by the precipitation forecast from one model ensemble.  There is 
much anticipation from the hydrology community to see more probabilistic guidance emerge 
from the National Water Model. 
 
3.  Time to High Flow 
 
The experimental Time to High Flow product is available for both the short range (18-hour 
forecast informed by the HRRR precipitation forecast and updated hourly) and the medium 
range (72-hour forecast informed by the GFS precipitation forecast and updated 6-hourly).  This 
product depicts the rivers and streams that are expected to be at high flow levels within the 
forecast period.  The color scale indicates the time step or increment during which high flow is 
predicted to occur within that forecast period. 
 

 
Figure 37. Experimental National Water Model Time to Exceed High Flow colors streams and 
rivers that are forecast to exceed high flow within the forecast period. This short range forecast 
is valid 11Z June 21 - 06Z June 22, 2017. 
 
The Time to High Flow product, both for short and medium range, was the most widely 
understood and applicable National Water Model guidance provided in the FFaIR Experiment. 
Forecasters felt this product was helpful by depicting how long it takes for streams to respond 
and how much they will be impacted by the rainfall.  This knowledge provides details about 
potential flooding impacts and timing which is useful in messaging and decision support.  
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Concerns were expressed about the display of the information in the product.  Although the 
color scale is intended to represent the time within the forecast period that the flow response 
is to occur, once colored for a response in the early part of the time period, the colors do not 
change or propagate in time to communicate whether or not rivers may remain at high flow 
throughout the the entire forecast time period. Conversely, if high flow is occurring in the 
beginning of the forecast period, it is not clear how long that high flow will persist throughout 
the period.  It is recommended that a different time representation be used for this product, 
such as time steps or animation.  
 
Additionally, forecasters wanted to see the precipitation forecast overlaid with the stream 
response, and an indication of time to bankfull rather than just high flow. 
 
4.  Ponded Water 
 
The experimental Ponded Water, a 6-hour product available for the short range (18-hour 
forecast), is informed by the HRRR precipitation forecast, and updated hourly.  Ponded water 
depicts the depth of rainfall accumulated over 6 hours (i.e. 1-6, 7-12, 13-18 hours ahead) which 
is not being absorbed into the soil nor evaporating. This represents depth in inches over a 
250-meter grid cell and not actual depth of ponding at any given location.  The Ponded Water 
product could be interpreted as a proxy to water inundation or a raw model representation of 
potential runoff. 
 
 

 
Figure 38. Experimental National Water Model Ponded Water depicting areas over which water 
is piling up due to heavy rainfall, valid 18Z 21 June - 00Z 22 June, 2017. 
 
The Ponded Water product intends to indicate areas over which the HRRR model precipitation 
may accumulate and lead to overland flooding.  The participants struggled with identifying ways 
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to discern meaning from the data and apply it to the forecast process.  In its current state, it can 
be another display for situational awareness but does not provide any new or different 
information than other available tools.  However, the data has the potential to evolve into a 
more meaningful product such as inundation. 
 
The depiction of grid cells was often described as “peppery,” and not representative of actual 
ground response to the rainfall.  Additionally, the various shades of blue on the depth scale 
made it difficult to distinguish between the different depths.  And depth over a 250 m grid box 
within the model as a scale for ponding rainfall was very difficult for the forecasters to 
understand in a way that would make the product useful guidance for flash flood prediction. 
Many participants desired a probabilistic product that would increase data spread, areal 
coverage and utility.  However, others countered that a probabilistic product with a 
neighborhood filter would force a tradeoff with the river and stream detail so valuable from the 
National Water Model itself. 
 
HRRR Time-Lagged Ensemble QPF on Saturated Soil Product 
 
The HRRR Time-Lagged Ensemble (HRRR-TLE) QPF on saturated soil product (Figure 39, left) was 
available for scoring on only 7 days (79 total participant scores) during the 2017 FFaIR 
Experiment, resulting in an average of 5.23 out of 10. 
 
Participants liked the idea of the probabilistic product showing where heavy rains falling on 
saturated soil may run off and cause flooding and agreed that the product had potential  for 
situational awareness.  But participants needed to develop confidence in this tool and often 
desired to see the parameters that comprised the product (the QPF and the soil saturation) to 
determine whether or not the resulting probabilities made sense.  

Figure 39. An example of the components that comprise the HRRR-TLE probability of QPF on 
saturated soil product (right) including the HRRRv3 percent soil saturation at the top 1 cm (left) 
and HRRR-TLE probability of precipitation (center). 
 
The probability of QPF on saturated soil was very often successful in not producing a probability 
where the QPF was occurring but soil was not saturated.  However, there were several 
instances when the probabilities were displaced from the flooding events or presented a 
probabilistic high bias.  This reduced confidence in the resulting forecasts.  The consensus was 
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that the participants needed more events and to have this product set in context with other 
guidance to develop applicability and messaging for potential flash flooding.  

Figure 40.  An example of the total 6-hour HRRRv3 QPF (left), 1-hour HRRR-TLE probability of 1 
inch of QPF on Saturated Soil within that 6-hour period (center), and the resulting 6-hour 
experimental probability of flash flooding (PFF) forecast (right) created by the FFaIR participants 
valid 00Z July 18, 2017. 
 
Traditional QPF forecasters tend to be more comfortable with numerical weather prediction 
(NWP) than with hydrologic models, so this representation was easy for them to consume and 
apply to the forecast process.  However, a caveat of this product is that the land surface models 
(LSMs) do not route water or have the fine scale mapping of variable soil conditions found in 
hydrologic models.  A hybrid product that allows forecasters to see all of the elements together 
(QPF, soil state, exceedance probabilities) would be ideal for most efficient flood prediction.  
 
Colorado State University Machine Learning Probabilities First Guess Field 
 
A new experimental tool from researchers at Colorado State University (CSU), referred to here 
as the CSU-Machine Learning Probabilities (MLP) First Guess Field, was subjectively evaluated 
each day during the experiment.  The tool is a prediction system comprised of random forests 
which is trained with 11 years (January 2003 - August 2013) of Days 2 and 3 GEFS Reforecast 
(GEFS/R) data.  More details on the system and the machine learning and decision tree aspects 
can be found in Appendix B.  The output available during FFaIR displayed the Day 2 (60 hour) or 
Day 3 (84 hour) forecast of the probability of 24 hour precipitation exceeding the one or ten 
year 24 hour average recurrence interval (ARI) within 40 km of a point.  For subjective 
evaluation, only the probability of exceeding the one year, 24 hour ARI was shown to 
participants and given a subjective score of 1 (very poor) to 10 (very good).  The UFV system 
and 24 hour MRMS QPE were used as verification and participants also were able to see the 
Day 2 or Day 3 experimental ERO that was valid over the same time period.  This method for 
verification was used rather than directly comparing to 24 hr QPE exceeding the 1 year 24 hr 
ARI in order to gather feedback on its utility as a first guess field for the ERO.  Participants were 
asked to comment on the overall quality of the CSU-MLP First Guess Field.  Specific areas of 
interest included the probabilistic representation as compared to both the verification and the 
experimental ERO forecasts as well as the overall spatial coverage of the probabilities. 
Participants were also encouraged to comment on whether this tool would be useful as a first 
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guess field for a WPC forecaster that is tasked with creating the ERO product.  Figure 41 shows 
an example of how the tool was presented to participants for subjective evaluation. 
 

 
Figure 41. Three panel image showing the Day 2 ERO (contoured) and UFV (green circles) (top 
left), 24 hour MRMS QPE (top right), and the Day 2 (60 hour) CSU-MLP First Guess Field forecast 
of the probability of 1 year 24 hour ARI exceedance within 40 km of a point (bottom left), all 
valid at 12 UTC June 24, 2017.  For the ERO in this example a 50% probability contour was issued 
over Kentucky and West Virginia.  Peak probabilities in the CSU-MLP CSU-MLP First Guess Field 
were between 20-25% in the New Mexico area. 
 
Figure 42 shows the average subjective score for both the Day 2 and Day 3 CSU-MLP First Guess 
Field.  The Day 2 First Guess Field had an average subjective score of 5.82 and standard 
deviation of 1.35.  The Day 3 First Guess Field scored higher with an average subjective score of 
6.10 and a standard deviation of 1.25.  Both these averages were below the experimental Day 2 
and 3 ERO average subjective scores (more detailed results on the ERO can be found in the next 
section). 
 
From the comments and feedback, participants generally felt the CSU-MLP tool was a viable 
first step in providing a first-guess-like field for the creation of the ERO product.  A first guess 
field does not currently exist and has been highly requested by WPC forecasters.  Participants 
found the overall spatial coverage of the 1 year 24 hour ARI exceedance probabilities to be 
quite good in most cases and a good indicator of areas of flood potential.  There were areas, 
however, that had too much areal coverage on several days.  These were mainly in the High 
Plains region and included areas of Montana, North Dakota, and South Dakota most often.  
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Figure 42.  A box plot of all the subjective scores for the 24 hour Day 2 and Day 3 forecasts from 
the CSU-MLP First Guess Field over the course of the entire experiment. 
 
The probability scale for the product was matched to try and equal the probability scale of the 
ERO.  When comparing to the experimental ERO issued by forecasters, the First Guess Field 
often had lower probabilities than the resulting experimental ERO created by the forecasters. 
One notable exception to this was in the Southwest region of the U.S., specifically over New 
Mexico.  Considering both Day 2 and Day 3 forecast days, the First Guess Field produced the 
highest probabilities over a “bullseye” in New Mexico on two-thirds of the possible days.  Figure 
43 shows one such day where the probabilities were very high, in excess of 35%, in an area over 
New Mexico, but the forecasters went with lower probabilities and light QPE was observed. 
This figure also shows the positive aspects of the product previously mentioned.  The overall 
spatial coverage is good and the higher probabilities in the Ohio River Valley and southeast 
Pennsylvania align well with reports.  Overall, probabilities are lower than the ERO forecast, not 
exceeding 12% in those areas.  
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After using the product for a few days, the participants were able to adjust their thinking for 
some of the issues that appeared often and still found the guidance valuable as a starting point 
for the ERO forecast.  Although not formally scored, participants found the 10 year 24 hour ARI 
exceedance probabilities to show no signal for marginal events and low signal for the stronger 
events.  This made the 1 year 24 hour ARI product the more popular of the two to consult. 
Based on feedback from an end of the week survey question, participants overwhelmingly 
agreed that the CSU-MLP First Guess Field is an excellent first step in providing an initial starting 
point for WPC ERO forecasts, which has been a long requested tool.  Many suggested further 
refinements and adjustments based on using this tool for the first time in a quasi-operational 
environment in order to further improve the tool. 
 

 
Figure 43.  Experimental Day 2 ERO (contours) overlaid on the UFV (green circles) (top left), 24 
hour MRMS QPE (top right), the Day 2 (60 hour) CSU-MLP First Guess Field forecast of the 
probability of 1 year 24 hour ARI exceedance within 40 km of a point (bottom left) all valid from 
12 UTC July 22 - 12 UTC July 23, 2017.  
 

6.  Forecast Activities 
 
Experimental Probability of Flash Flooding Forecasts 
 
As part of the 2017 FFaIR Experiment, participants evaluated and subjectively scored the 6-hour 
experimental Probability of Flash Flooding (PFF) forecasts that were made each morning over a 
chosen limited domain of the CONUS, valid 18Z-00 UTC on Day 1.  For verification, operational 
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flash flood warnings, flood reports, and 6-hour MRMS QPE were used (please refer to the 
“Verification” section in section 3 for additional details).  An example of a PFF forecast with 
verification is shown in Figure 44. 
 

 
Figure 44.  Experimental 6-hour PFF with probabilities of a 15% (slight/yellow), 30% 
(moderate/red), and 50% (high/magenta) probability of flash flooding from 18 UTC June 22 - 00 
UTC June 23, 2017.  The flash flood warnings are shown as green polygons and flash flood LSRs 
as yellow circles. 
 
Figure 45 shows a box plot of the all the subjective scores for the 6-hour experimental PFF 
which had an average subjective score of 6.84 out of 10 and a standard deviation of 1.90.  The 
lowest score given by participants was a 2.5 (which was an outlier from the rest of the dataset 
as denoted by the red plus in the figure below) for the PFF, but it did receive an individual 
participant score of a perfect 10 on three separate occasions.  
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Figure 45.  A box plot of the overall subjective scores for the 6-hour PFF over the course of the 
2017 FFaIR Experiment. 
 
The participants used experimental deterministic and ensemble CAM forecasts of QPF, 
reflectivity, and exceedance probabilities as well as hydrologic guidance from the National 
Water Model to produce the PFF.  At times when experimental guidance was not plentiful, 
operational guidance was used.  Of the 20 forecasts issued during the experiment, four of them 
were considered an over-forecast with contour values too high given the verification.  Several 
forecasts did not have a large enough areal extent to capture all of the impacts. In two cases 
participants felt the coverage was too broad and should have been broken up into two separate 
contours.  Otherwise the experimental PFF forecasts were generally regarded as well done.  
 
Experimental Day 2 and Day 3 Excessive Rainfall Outlooks 
 
Each day participants evaluated and subjectively scored the 24 hour experimental Day 2 and 
Day 3 EROs.  For verification, the UFV system was used which takes into account FFG, ARI, and 
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flood and flash flooding reports.  Please refer to the “Verification” section in section 3 for 
additional details.  Figure 46 shows an example of a Day 2 ERO overlaid with UFV reports. 
Twenty-four hour MRMS QPE was also available for reference in the evaluation.  Participants 
could assign scores from 1 (very poor) to 10 (very good).  
 

 
Figure 46.  Experimental Day 2 ERO with probabilities of a 5% (marginal/green), 15% 
(yellow/slight), 30% (moderate/red), and 50% (high/magenta) chance of flooding rains 
occurring from 12 UTC June 22 - 12 UTC June 23, 2017.  The UFV reports are shown by the green 
circles. 
 
Figure 47 shows a box plot of the all the subjective scores for the Day 2 and Day 3 experimental 
ERO.  The Day 2/Day 3 EROs were subjectively scored the highest out of all forecasts and model 
guidance in the experiment.  The Day 2 ERO had an average subjective score of 7.22 out of 10 
and a standard deviation of 1.39.  The Day 3 ERO had an average subjective score of 6.95 out of 
10 and a standard deviation of 1.24.  
 

57 



 
Figure 47.  A box plot of the overall subjective scores for the 24 hour experimental Day 2 and 
Day 3 ERO over the course of the entire experiment. 
 
As reflected by the average subjective scores, participants had overall positive feedback on the 
ERO forecasts.  The most common feedback was that the shape and spatial coverage of the 
marginal (5%) probability contour usually captured well the areas where there were reports 
and rainfall.  There were cases where smaller clusters of reports were missed and also times 
where, after seeing a large concentration of reports, the participants commented that the 
probability threshold should have been higher.  On two days that had the lowest scores for Day 
2, a four and a five out of 10, comments noted that in both cases the two separate marginal 
contours should have been connected due to a number of reports falling within the gap.  For 
the day that scored a five out of 10, participants suggested a slight (15%) contour was needed 
in the Southwest whereas a slight contour in the Southeast was not necessary.  The Day 3 ERO 
forecast that had the lowest average score, a four out of 10, failed to capture a large cluster of 
reports in Texas within any outlook, and the marginal areas that were drawn could have been 
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expanded or connected.  To summarize, participants felt that the experimental Day 2 and Day 3 
ERO forecasts provided useful guidance by outlooking areas that had the potential for flooding 
rains.  The most common issues with the forecasts were reports falling between separated 
marginal areas as well as probabilities that were too low based on the concentration of reports 
that occurred. 
 
Comparison of the Day 2 and Day 3 Experimental FFaIR EROs and WPC Operational EROs 
 
The Day 2 and Day 3 experimental FFaIR EROs issued over the four weeks of the experiment 
were compared to the operational WPC EROs issued over the same time period.  The 09 UTC 
issuance of the Day 2 and Day 3 operational ERO was used for comparison.  For verification, the 
UFV system was used with one important change:  Stage IV QPE was used instead of 
radar-only-based MRMS QPE.  The underlying probability contours for the FFaIR ERO differed 
from the operational ERO, so when assessing average fractional coverage, the FFaIR definition 
of marginal 5-10%, slight 15-30%, moderate 30-50%, and high 50%+ was applied to the 
operational ERO as well.  Figures (48-51) show the probability of being in a “marginal risk” area, 
a “slight risk” area, a “moderate risk” area, and a “high risk” area from the 
operational/experimental EROs, respectively, over the four week experiment.  From the figures 
it is immediately apparent that  there are lower probabilities and lower overall coverage from 
the operational EROs at all probability thresholds.  Zero Day 2 09 UTC high risk operational 
EROs were issued over the course of the experiment.  Day 3 high risk EROs are currently not an 
option in the WPC operational product and thus, zero were issued as well.  The area covered by 
the FFaIR ERO marginal, slight, and moderate contours was 207.7%, 206.9%, 394.9% greater 
than the operational ERO forecast, respectively.  These maps also illustrate the major weather 
events during the experiment with higher probabilities in the Southeast from Tropical Storm 
Cindy, the Southwest from monsoonal moisture, and the upper Midwest/Great Lakes region 
from persistent MCS activity. 
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Figure 48.  Probability of being in a “marginal risk” experimental FFaIR ERO contour (top) and 
“marginal risk” operational ERO contour (bottom) over the four week experiment. 
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Figure 49.  Probability of being in a “slight risk” experimental FFaIR ERO contour (top) and 
“slight risk” operational ERO contour (bottom) over the four week experiment. 
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Figure 50.  Probability of being in a “moderate risk” experimental FFaIR ERO contour (top) and 
“moderate risk” operational ERO contour (bottom) over the four week experiment. 
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Figure 51.  Probability of being in a “high risk” experimental FFaIR ERO contour (top) and “high 
risk” operational ERO contour (bottom) over the four week experiment. 
 
Figure 52 shows the bulk fractional coverage by threshold of the operational EROs and FFaIR 
EROs.  The green and red horizontal lines represent the lower and higher bound of each 
probabilistic category.  All thresholds, except for the operational moderate category, fell within 
the probabilistic definitions and can be considered calibrated.  Due to the larger areal coverage 
of the FFaIR EROs, their average fractional coverage is lower when compared to the operational 
EROs.  Figure 53 and Figure 54 show two examples of the WPC operational and FFaIR 
experimental Day 2 ERO valid 12Z June 22-23, 2017 and 12Z July 19-20, 2017, respectively.  In 
both of these examples, the FFaIR ERO is more aggressive with the addition of moderate and 
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high areas where the operational ERO had none or smaller moderate areas compared to the 
FFaIR.  The verification reports are represented by the different symbols on each map. 
 

 
Figure 52.  Fractional coverage of the 2017 FFaIR EROs and operational EROs issued over the 
same time period for each probabilistic category.  Green horizontal lines represent the lower 
defined bound for each threshold and red horizontal lines represent the highest defined bound.  
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Figure 53.  Operational (top) and FFaIR experimental Day 2 ERO (bottom) valid 12 UTC June 22 
to 12 UTC June 23, 2017 with verification. 
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Figure 54.  Operational (top) and FFaIR experimental Day 2 ERO (bottom) valid 12 UTC July 19 to 
12 UTC July 20, 2017 with verification. 
 
 
 
Figure 55A shows the daily Brier Skill Score (BSS) referenced against the operational EROs 
throughout the experiment and Figure 55B shows the bulk BSS referenced against the 
operational EROs for the Day 2 and Day 3 EROs.  In both these figures, anywhere with positive 
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values represents instances where the FFaIR ERO performed better than the operational ERO. 
There was considerable day to day variability, as is seen in Figure 55A, however in general, 
FFaIR EROs during portions of Week 1 and most of Week 2 performed better than the 
operational EROs.  Weeks 3 and 4 the FFaIR EROs generally scored worse when compared to 
the operational EROs.  In terms of the Day 2 and Day 3 EROs over the whole experiment (Figure 
55B), the Day 3 ERO showed the most improvement in skill when compared to the operational 
ERO.  Both FFaIR Day 2 and Day 3 EROs showed skill improvements over the operational EROs, 
except for the Day 2 ERO that was verified against FFG exceedance, which is the current 
operational definition. 
 

 
Figure 55.  (A) Daily BSS referenced against operational EROs throughout the entire experiment. 
Positive values represent days the FFaIR ERO had better skill than the operational ERO, negative 
values represent worse skill.  (B) Bulk BSS of the Day 2 and Day 3 FFaIR EROs referenced against 
the operational EROs over the whole experiment. 
 
Lastly, Figure 56 shows the area under the relative operating characteristic (AuROC) for both 
the FFaIR and operational Day 2 and Day 3 EROs.  AuROC measures the hit rate against the false 
alarm rate, with higher values being better.  According to this measure, the FFaIR EROs were 
consistently more skillful than the operational EROs during the experiment period.  These 
results also show the Day 3 FFaIR ERO had the biggest skill improvement over the operational 
ERO.  Despite the small sample size, all of these results combined show that despite the much 
larger areal coverage of the issued Day 2 and Day 3 FFaIR EROs, the objective statistics generally 
showed that the experimental EROs improved upon the skill of the operational EROs that were 
issued during the experiment.  
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Figure 56.  Bulk area under the relative operating characteristic for both the Day 2 and Day 3 
operational and FFaIR EROs. 
 
Experimental Day 2 Flood Watches 

 
After the Day 2 ERO was completed by the participants, they were tasked with deliberating on 
Day 2 potential Flood Watches valid during 12Z-12 UTC, 12-, or 18-hour increments were an 
available option.  The experimental watch region was defined by a contoured area in which 
operational flash flood warnings were expected to be issued during the specified valid time.  On 
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several of the days during the experiment, more than one experimental watch was issued on 
Day 2 with different valid times.  All watches were subjectively evaluated and scored by the 
participants and again, the UFV system and MRMS QPE matching the valid time of the watch 
were used (please refer to the “Verification” section in section 3 for additional details).  
 

 
Figure 57.  An example of two experimental flash flood watch areas drawn in the FFaIR 
Experiment with flood reports (yellow circles) and operationally-issued flash flood warnings 
(green polygons) valid 18Z July 19 - 12Z July 20, 2017 and its corresponding NSSL QPE valid for 
that same 18-hour time period (right). 
 
The experimental flood watches received an average subjective score over the experiment of 
6.2 out of 10 by participants with a standard deviation of 2.02.  Figure 58 shows a box plot of 
the all the subjective scores for the watches.  The lowest average score given during the 
experiment was a one-time 3 out of 10.  The highest average score was a 9, achieved for three 
separate watch evaluations.  Much of the subjective feedback from participants about issued 
experimental watches referenced “under-watching”, or contours being too limited in areal 
extent. 
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Figure 58.  A box plot of the overall subjective scores for the experimental flood watches over 
the course of the 2017 FFaIR Experiment. 
 
The various groups approached the creation of the CONUS-wide experimental watches 
differently.  It was expected that participants would start their approach with the NWS field 
office threshold of at least 50% forecaster confidence that flash flooding will occur within 48 
hours as justification for a watch.  This standard should then have aligned with the 50% 
probability of flash flooding contours drawn in the corresponding experimental Day 2 ERO. 
However, we found that this was rarely the case when additionally factoring potential impacts 
into the decision making process (Figure 59).  It was discovered that watch decisions are very 
complex, and tend to be more subjective than objective, driven by impacts and messaging. 
Conversely, the ERO tends to rely on more objective accuracy thus seemingly cannot directly 
inform a flash flood watch within its current paradigm. 
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Figure 59.  An example of an ERO with 30% and 50% contours drawn along the Gulf Coast (left) 
with a corresponding large flash flood watch (right) that extended northward beyond those 
contours to include Kentucky and West Virginia based on impacts information such as the 1-year 
anniversary of the deadly 2016 West Virginia floods and population density. 
 
Creating flood watches on a CONUS scale sparked interesting discussions throughout the 
experiment.  A common thread was the need for local knowledge of basins, infrastructure, 
terrain, soil type, and other flood-related impacts which could be achieved through deep 
collaboration between a national center and the field offices and the incorporation of a 
collaborative tool such as the National Water Model.  The process of issuing a flash flood watch 
valid during the Day 2 period (as opposed to operational watches which are more often issued 
for Day 1) was fairly unconventional and posed new challenges which the experiment 
attempted to meet by offering longer-range high-resolution QPF and hydrologic guidance to 
increase confidence.  Overall the participants resonated that issuing flood watches over the 
CONUS was certainly feasible with tighter definitions, local collaboration and proper staffing. 
 

7.  Other Forecasting Tools and Evaluations 
 
CIRA Layered Precipitable Water 
 
During the 2017 FFaIR Experiment, we asked participants to use and subjectively summarize the 
layered precipitable water (LPW) product.  The LPW developed at the Cooperative Institute for 
Research in the Atmosphere (CIRA) uses microwave sensors on polar orbiting satellites and is 
mapped to a 16km grid to visualize the vertical distribution of water vapor in the atmosphere 
which may lead to heavy rainfall and flash flooding.  
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Figure 60.  An example of the CIRA LPW available on the web and to the NWS National Centers 
NAWIPS systems every 3 hours. 
 
The participants generally found the CIRA LPW to be very useful for situational awareness and 
very short-range flood forecasting as it is not a prognostic field.  The availability and real-time 
nature of the product made it more difficult to apply to longer-range or flood outlook products. 
Analyzing the moisture content and transport at level intervals was particularly useful for areas 
of complex terrain, tropical systems, atmospheric rivers, and monsoonal fetches.  For example, 
during the experiment, participants were able to identify moisture in the mid and upper levels 
from Tropical Storm Eugene in the Pacific interacting with the mountainous terrain in the 
southwest US.  The correlation of moisture plumes aided the development of flood-producing 
monsoonal convection.  Additionally, the CIRA LPW showed dry air being pulled into Tropical 
Storm Cindy’s circulation and led forecasters to trim flooding potential along the Gulf Coast. 
 
Some participants felt the CIRA LPW did not offer any new information over soundings, model 
data or other precipitable water tools.  As with other satellite-derived products, there was 
frustration with the areas of dense cloud cover shrouding the heavy rain and flood areas of 
concern.  Although the visualization and data post-processing of the CIRA LPW was highly 
praised, the time constraints of longer-range flood forecasting often deemed this product not 
particularly vital to the forecast process.  
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8.  Summary and Research-to-Operations Recommendation 
 
The 5th annual Flash Flood and Intense Rainfall Experiment was conducted within the 
Hydrometeorology Testbed at WPC (HMT-WPC) from June 19-July 21, 2017 bringing together 
NWS meteorologists, hydrologists, and the development and research communities for the 
advancement of research into WPC and NWS field operations.  The FFaIR Experiment focused 
on the use of high resolution guidance to improve flash flood prediction in both the short range 
(6-12 hours) and longer range (48-72 hours).  The experiment also focused on engagement with 
the NWS Science and Operations Officer (SOO) community to enhance flash flood situational 
awareness and collaborate on potential experimental flood watches.  Subjective and objective 
data was successfully collected and analyzed.  The conclusions drawn are as follows: 
 

● The CSU Machine-Learning First Guess field for the ERO showed great potential and 
was scored well by participants.  It is recommended that the CSU developers work to 
reduce recurring biases and continue to refine the tool and reintroduce it into the 
testbed next year for further evaluation. 

● The ensemble QPF blended mean was favorably scored by participants and was 
generally successful in increasing QPF magnitude of the composite mean and decreasing 
the magnitude of the probability matched mean.  Although deeper objective evaluations 
of the components (composite and probability matched means) are recommended in 
future experiments to determine the best performance, there is justification for 
transitioning the QPF blended means for use in operations. 

● The Time-Lagged HRRR (HRRR-TLE) QPF on saturated soil product performed as 
expected and was a useful tool for visualizing high probabilities of precipitation falling 
on soil that is already near or at saturation. Participants would like more opportunities 
to use this product in forecast operations to evaluate its utility in the flood forecast 
process.  Due to its ease of transition into WPC operations and its availability on the 
ESRL/GSD (https://rapidrefresh.noaa.gov/hrrr/hrrrtle/), it is recommended that the QPF 
on saturated soil be available operationally to forecasters for further evaluation. 

● The Experimental Time to High Flow product from the National Water Model (NWM) 
has high potential for use by forecasters in assessing flood risk.  The information 
provided in this product is adequately detailed and can be used not just for prediction 
but in decision support messaging.  It is recommended that this product be developed 
further to improve representation of time (for example, animation) and coupled with 
the capability to overlay the QPF forecast.  The Time to High Flow should then be 
reintroduced to the testbed next year for further evaluation. 

● The Experimental Ponded Water from the NWM is not recommended for operations at 
this time.  Although the product does depict where the model QPF is accumulating 
water in grid cells that is not running off or absorbing into the soil, it does not provide 
information regarding flood risk.  It has been suggested that the Ponded Water product 
be a step toward a more useful dataset such as inundation or a representation of 
accumulated precipitation that is reaching and/or exceeding bankfull. 

● The Experimental High Flow Probability product from the NWM is a welcome first step 
into probabilistic hydrologic guidance.  Though this product has utility for the 
forecasters, it is recommended for further development to ensure consistent messaging 
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among the NWM product suite.  It is also recommended that greater ensemble 
membership be introduced to increase model spread and refine the probabilistic 
output.  Probabilities from the NWM should continue to be tested in future 
experiments. 

● Testing Day 2 and Day 3 high resolution deterministic QPF was a primary goal of the 
2017 FFaIR Experiment, and results were mixed.  Common weaknesses in convective 
allowing models, including difficulty capturing events in more weakly-forced synoptic 
regimes and a low bias in the QPF magnitude and spatial extent, propagate from Day 1 
into Days 2 and 3.  There is slight degradation in skill from Day 2 to Day 3.   However, 
participants found value in the higher resolution models, especially reflectivity fields, 
and can apply known biases to the forecast process.  It is recommended that developers 
continue work on the schemes that improve QPF and reflectivity fields in high-resolution 
models so they may further benefit flood forecasting at longer time ranges. 

● It continues to be strongly recommended that water models and precipitation models 
continue to experiment with fusion (not only in model forcings, but also in 
visualization) to create products best suited for flood forecasters with issuance 
deadlines.  It continues to be the desire of forecasters to be able to overlay the model 
QPF onto the hydrologic response data, both deterministically and probabilistically, with 
animating time steps for full situational awareness and improved prediction and 
messaging. 

● The area covered by the FFaIR ERO marginal, slight, and moderate contours was 
significantly larger than the Operational ERO for every probabilistic threshold at Days 2 
and 3, thus the FFaIR EROs had lower average fractional coverage of flooding proxies 
than the Operational EROs. FFaIR forecasters were more aggressive issuing higher risk 
probabilistic contours, indicating increased confidence with higher resolution guidance.  

● Although considerable day to day variability is noted between FFaIR and Operational 
ERO performance, The FFaIR ERO exhibits lower probabilistic error when the Brier Skill 
Score is greater than zero.  FFaIR ERO performed better than the Operational ERO first 
two weeks (strong synoptic events such as T.S. Cindy, frontal systems), but less so over 
second two weeks (marginal events, scattered convection, monsoons). The FFaIR ERO 
consistently achieved higher Area Under the ROC values than operational EROs, with 
the greatest improvement on Day 3. 
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APPENDIX A 
 
Participants 
* Denotes participant was an observer 
EMC-M indicates Environmental Modeling Center - Mesoscale Branch 
EMC-G indicates Environmental Modeling Center - Global Branch 
Note:  Some weeks participants from EMC and WPC forecasters shared/split weeks 

Week WPC 
Forecaster WFO/RFC/Other Research/Academia EMC 

June 19 – 23 Patrick Burke 

Leonard Vaughn (WFO 
CAE) 
Jeremy Michael (WFO 
ILK) 

Diana Stovern* (WPC) 
Nate Snook (OU/CAPS) 
Trevor Alcott (ESRL-GSD) 
Pam Heinselman* (NSSL) 

Ben Blake (EMC-M) 
Corey Guastini (EMC-M) 

June  26 – 30 Marc Chenard 

Jonathon Thornburg 
(NCRFC) 
Keith Fenwick (Met 
Office, UK) 

Chandra Kondragunta* 
(OWAQ) 
Ryan Sobash* (NCAR) 
Katie McGee (MDL) 
Jeff Craven* (MDL) 
John Forsythe (CIRA) 
Kelly Mahoney (ESRL-PSD) 
Russ Schumacher (CSU) 

Jacob Carley (EMC-M) 
Matthew Pyle (EMC-M) 

July 10 – 14 Rich Bann Neal Strauss (NERFC) 

Phil Schafer* (MDL) 
Kate Abshire (OWP) 
Jill Hardy (WDTD) 
Terra Ladwig (ESRL-GSD) 
Greg Herman (CSU) 
Brian Tang (SUNY-ALB) 

Tracey Dorian (EMC-G) 

July 18 – 22 Robert Oravec 
Melissa Huffman (WFO 
HGX) 
Tim Axford (WFO PBZ) 

Peter Stone* 
Cammey Simms (MDL) 
Curtis Alexander 
(ESRL-GSD) 
Steve Martinaitis (NSSL) 
Fernando Salas* 
(OWP/NWC) 
Keith Brewster (OU/CAPS) 

Mallory Row (EMC-G) 
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APPENDIX B 
 
Operational and Experimental Deterministic Guidance  
 
RFC Flash Flood Guidance 
 
Flash Flood Guidance (FFG) is produced by each individual NWS River Forecast Center (RFC) in 
accordance with each RFC domain (Fig. 61).  There are four methods currently employed to 
create FFG: Lumped Flash Flood Guidance (LFFG), Gridded Flash Flood Guidance (GFFG), 
Distributed Flash Flood Guidance (DFFG), and the Flash Flood Potential Index (FFPI). Therefore, 
the method of producing FFG is inconsistent across RFCs.  WPC compiles the guidance from 
each RFC to create a CONUS 5-km resolution mosaic FFG grid.  The CONUS mosaics are 
time-stamped every 6 hours (00, 06, 12, 18 UTC), but are updated hourly to account for the 
latest guidance issued by RFCs.  

 
Figure 61 Showing domain for each NWS River Forecast Center (NOAA/NWS 
(water.weather.gov) 
 
Precipitation Average Recurrence Intervals 
 
Precipitation Average Recurrence Intervals (ARIs) are frequency estimates generated mainly 
from NOAA Atlas-14 Climatology of USGS rain gages.  Statistical analyses are applied to the 
precipitation climatology to generate precipitation amounts representing the approximate 
frequency of occurrence (e.g. 1 year, 5 years, 100 years, etc. ) for various accumulation periods 
(e.g. 5 minutes, 30 minutes, 3 hours, 24 hours, etc.). RIs can help to identify how rare a rainfall 
event is for a given area, alerting forecasters to abnormal or potentially extreme rainfall events. 
Standard ARIs are available for intervals of 2, 5, 10, 25, 100, 500 and 1000 years, and are 
measured in inches, and do not account for antecedent conditions.  An example of the 6 hour, 
100 year recurrence interval is shown in Figure 62.  
 
For 2017 FFaIR ensemble model developers and participants, we will be providing fully-stitched 
grids (Herman and Schumacher, 2016).  Thresholds come from NOAA Atlas 14 for most of 
CONUS. This includes the New England area which received an Atlas 14 update in autumn 2015, 
the most recent update to Atlas 14. Two regions of CONUS have not yet received NOAA Atlas 14 
updates: Texas and the northwest, which is comprised of Washington, Oregon, Idaho, Montana, 
and Wyoming. For Texas, thresholds from Technical Paper 40 (TP-40; Hershfield 1961) were 

77 



used; digital grids of the selected ARIs between 1 and 100 years were included for 6- and 
24-hour precipitation accumulations. and so no additional processing was required. For the 
northwest, TP-40 did not provide coverage; instead, NOAA Atlas 2 (Miller et al. 1973) was used 
for these thresholds. The only grids that had been digitized were 2- and 100-year ARIs for 6- 
and 24-hour accumulations. However, the two frequency thresholds at each point for these five 
states combined with the knowledge that these threshold estimates were originally derived 
from a (two-parameter) Gumbel distribution, a Gumbel distribution could then be fitted to each 
point (two equations, two unknowns), and estimates for the 1-, 5-, 10-, 25-, and 50-year ARIs 
derived from those Gumbel fits. These different threshold estimate sources were then stitched 
together to form CONUS-wide grids.  
 

 
Figure 62. An example of a full Average Recurrence Interval map (100 year ARI over 6 hours) 
available to forecasters both operationally at WPC and in the FFaIR Experiment. 
 
Flooded Locations and Simulated Hydrographs (FLASH) 
 
The Flooded Locations And Simulated Hydrographs Project (FLASH) was launched in early 2012 
largely in response to the demonstration and real-time availability of high-resolution, accurate 
rainfall observations from the MRMS/Q3 project. FLASH introduces a new paradigm in flash 
flood prediction that uses the MRMS forcing and produces flash flood forecasts at 1-km/5-min 
resolution through direct, forward simulation. The FLASH team is comprised of researchers and 
students who use an interdisciplinary and collaborative approach to achieve the goal. 
 
In the first implementation, FLASH relies on rainfall forcing from MRMS/Q3 to the CREST model 
run with a priori, physically based parameters.  The CREST hydrologic model is used to produce 
surface water fluxes at 1 km/5 min resolution. These discharges are converted to return periods 
using a long-term hindcast simulation with forcing from the gridded NEXRAD rainfall archive. 
All hydrologic forecast products are produced at the same 1-km/5-min resolution as the rainfall 

78 

http://eos.ou.edu/
http://www.nssl.noaa.gov/projects/mrms/
http://eos.ou.edu/
http://www.nssl.noaa.gov/projects/mrms/


forcing.  The availability of long-term, gridded rainfall archives provides for retrospective 
hydrologic simulation. At each grid point, the time series of historic simulations are used to 
evaluate the rarity or severity of model forecasts. 
 
National Water Model (NWM) Experimental Post-Processed Products 
 
The National Water Model (NWM) is a hydrologic model that simulates real-time and 
forecasted streamflow, as well as other key water budget variables, over the entire continental 
United States (CONUS).  Operating on the NHDPlus river network, the NWM simulates 
streamflow for ~2.7 million river segments by coupling land-surface processes, defined on a 1 
km grid, with terrain routing processes defined on a 250 m grid.  An example of the streamflow 
analysis is shown in Figure 63. 
 

 
Figure 63. National Water Model Streamflow Analysis. 
 
The core of the system is the NCAR-supported community WRF-Hydro hydrologic model.  It 
ingests forcing from a variety of sources including MRMS radar-gauge observed precipitation 
data and HRRR, RAP, GFS and CFS NWP forecast data.  WRF-Hydro is configured to use the 
Noah-MP Land Surface Model (LSM) to simulate land surface processes, separate terrain 
routing modules to perform diffusive wave surface routing and saturated subsurface flow 
routing on a 250m grid, and muskingum-cunge channel routing down NHDPlus stream 
segments.  River analyses and forecasts are provided across a domain encompassing the 
CONUS and hydrologically contributing areas, while land surface output is available on a larger 
domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 
58N).  The system includes an analysis and assimilation configuration along with three forecast 
configurations.  USGS streamflow observations are assimilated into the analysis and 
assimilation configuration, and all four configurations benefit from the inclusion of 1,260 
reservoirs.  
 
The NWM is run in four configurations: 
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1. Analysis and assimilation (updated every hour) 
2. Short-Range (18 hour deterministic forecast updated every hour) 
3. Medium-Range (10 day deterministic forecast updated every six hours) 
4. Long-Range (30 day multi-member ensemble forecast update every six hours) 

 
In order to quickly synthesize the spatial and temporal patterns within the NWM output, the 
NWC plans to post-process and publish a suite of dynamic map services that allow users to 
zoom in and and pan around areas of interest.  To test experimentally during FFaIR, these NWM 
products may include: 
 

● High flow potential (updated each hour): This map will identify reaches that are at or 
above a defined high flow threshold** using the analysis/assimilation configuration of 
the NWM. This map will communicate near real-time conditions of high flow. 

● Time to high flow/return to normal (updated each hour): This map will use the 18 hour 
short range forecast from the NWM to communicate the time (or time until) each river 
segment exceeds a high flow threshold** (e.g. 1 hour ahead,  2 hours ahead, 3 hours 
ahead, 4-6 hours ahead, 7-9 hours ahead etc.) In addition, this map will communicate 
the time at which the high flow is predicted to return to normal.  

● Time to high flow (updated every 6 hours): This map will use the 10 day medium range 
forecast from the NWM to communicate the time (or time until) each river segment 
exceeds a high flow threshold**. This map will be similar to the above but would be 
symbolized using a coarser time scale (i.e. 18-24 hours ahead, 24-30 hours ahead, 30-36 
hours ahead etc.). This map will only extend out 3 days. 

● Time-lagged probabilistic forecast (updated each hour): This map will communicate the 
probability of exceeding a high flow threshold** 6 hours ahead, for each river segment. 
Probability will be based on time-lagged ensembles using the 18 hour short range 
forecast from the NWM. Depending on the zoom level, probabilities will be aggregated 
in space to improve visualization. 

● Ponded water forecast (updated each hour): This map will depict areas where water is 
potentially ponding within the 250 m NWM grid. This map is to be used as guidance and 
not interpreted as actual depth of ponded water. 

● Time enabled NWM QPF (update each hour): This map will display depth of 
precipitation as a function of lead using the 18 hour short range forecast. The 
precipitation grid presented here represents the forcing used to drive the NWM. 

● Accumulated QPF (updated each hour) This map will display the cumulative 
precipitation depth as a function of lead time (as described above) over the short range 
forecast time horizon (0-18 hours).  

 
EMC 3km North American Model CONUS Nest (NAM)  
 
Version four of the North American Mesoscale Forecast System (NAM) features many changes 
to its model and data assimilation components that serve to improve forecast quality from its 
convection-allowing, nested domains.  A subset of these changes include: (a) updates to the 
Ferrier-Aligo microphysics scheme to reduce noted high-precipitation biases and improve 
stratiform precipitation, (b) improved consistency between model dynamics and physics 
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through calling the physics routines more frequently, and (c) advecting humidity every 
dynamics timestep.  In addition, the CONUS, Alaska, Hawaii, and Puerto Rico nest grid-spacings 
have all been unified at 3 km while the requestable, on-demand Fire Weather domain will use a 
grid-spacing of 1.5 km. 
 
Prior versions of the NAM forecast system have featured a three hourly forecast-analysis 
assimilation cycle done just on the 12 km parent domain.  The NAM package has been updated 
with an hourly forecast-analysis assimilation cycling period, which includes radar and lightning 
observations, prior to initializing the free forecasts at the traditional times of 00, 06, 12, and 
18Z.  Furthermore, the NAM features a distinct data assimilation cycle for its 3 km CONUS and 
Alaska domains in addition to the traditional 12 km North American domain. 
 
The NAM system changes targeted the greatest deficiencies in the previous NAM system, such 
as excessive precipitation from the high-resolution CONUS nest and risks of failure exposed by 
Hurricane Joaquin. The development and testing of NAM targeted these deficiencies through 1) 
upgrading the forecast model, 2) improvements in the data assimilation techniques applied for 
efficient use of all observations (especially NEXRAD data) and 3) assimilation of new 
observation types. Specifically, the changes include increasing the horizontal resolution of the 
convective-allowing CONUS nest from 4 to 3 km, steps to ensure unstable thermodynamic 
structures do not develop, updated microphysics to improve storm structure and radar 
reflectivity signatures, land-surface model changes to improve near-surface fields and visibility, 
and building a new NAM data assimilation system for the CONUS and Alaska nests which 
allowed for effective use of NEXRAD radar and lightning data. 
 
The NAM changes led to greatly improved warm-season precipitation forecasts from the 3 km 
model simulations, improved predictions of low visibility conditions in coastal regions, 
improved cool-season precipitation forecasts from the 12 km simulation, improved short-term 
(0-12 h) simulation of convective storms in the 3 km simulation, and a reduction of the moist 
bias for CONUS cool-season surface dew point temperatures and a reduction of the warm bias 
for CONUS summer surface temperatures. 
 
The NAM CONUS Nest provides runs hourly out to 60 hours at 00Z, 06Z, 12Z, and 18Z cycles.  
 
United Kingdom Met Office Experimental Unified Model (UM) 
 
The Met Office Unified Model (UM) is the name given to the suite of numerical modelling 
software used by the Met Office. A fully operational, nested limited-area high resolution 
version of the UM at (2.2km horizontal resolution) running twice per day will be supplied to the 
2017 FFaIR Experiment. These operational, nested, hi-res versions will incorporate the latest 
UM settings that are used over the UK. The 2.2-km model has 70 vertical levels (spaced 
between 5m and 40 km) across a slightly sub-CONUS domain (Figure 64). 
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Figure 64.  The Unified Model sub-CONUS domain. 
 
Taking its initial and lateral boundary conditions from the 00z/12z 17-km horizontal grid spacing 
global configuration of the UM, the 2.2-km model initializes without data assimilation and runs 
out to T+120. This model configuration uses a 3D turbulent mixing scheme using a locally 
scale-dependent blending of Smagorinsky and boundary layer mixing schemes, stochastic 
perturbations are made to the low-level resolved-scale temperature field in conditionally 
unstable regimes (to 
encourage the transition from subgrid to resolved scale flows) and the microphysics is single 
moment. Partial cloudiness is diagnosed assuming a triangular moisture distribution with a 
width that 
is a universally specified function of height only. There is no convection parameterization in this 
or any 
of the high-resolution UM configurations. 
 
Details at a glance: 
 

● Horizontal Resolution: 0.02 degrees (approx 2.2km at equator) 
● Vertical levels: 70 (up to 40km) 
● Time-Step: 100s 
● Initialisation: From UK Met Global analysis at 0z and 12 
● Boundary Conditions: Hourly Global UK Met 
● Run Length: 5 days 

 
Finite Volume Cubed-Sphere Dynamical Core (FV3) Versions 
 
The GFDL Finite Volume Cubed-Sphere Dynamical Core (FV3) is a scalable and flexible 
dynamical core capable of both hydrostatic and non-hydrostatic atmospheric simulations.  The 
full 3D hydrostatic dynamical core, the FV core, was constructed based on the Lin-Rood (1996) 
transport algorithm and the Lin-Rood shallow-water algorithm (1997). The pressure gradient 
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force is evaluated by the Lin (1997) finite-volume integration method, derived from Green’s 
integral theorem based directly on first principles, and demonstrated errors an order of 
magnitude smaller than other well-known pressure-gradient schemes. Finally, the vertical 
discretization is the “vertically Lagrangian” scheme described by Lin (2004). 
 
The most unique aspect of the FV3 is its Lagrangian vertical coordinate, which is 
computationally efficient as well as more accurate given the same vertical resolution. Recently, 
a more computationally efficient non-hydrostatic solver is implemented using a traditional 
semi-implicit approach for treating the vertically propagating sound waves. This faster solver is 
the default. The Riemann solver option is more efficient for resolution finer than 1km, and also 
more accurate, because sound waves are treated nearly exactly.  FV3 has been chosen as one 
of the candidates for the Next Generation Global Prediction System project (NGGPS), designed 
to upgrade the current operational Global Forecast System to run as a unified, fully-coupled 
system in NOAA’s Environmental Modeling System infrastructure. For more information, please 
see https://www.gfdl.noaa.gov/fv3/. 
 
For the 2017 FFaIR Experiment, we will be evaluating three different models that all utilize the 
FV3 dynamical core.  The first will be referred to as the FV3-GFS and is a 13 km quasi real-time 
model in which 4 cycles per day are available and initialized with the operational GFS analyses 
and provided by EMC.  The FV3-CAPS was provided by the CAPS/OU team.  This version is a 3 
km CAM that forecasts out to 84 hours and uses the Thompson microphysics scheme, GFDL 
planetary boundary layer (PBL) physics, and is initialized by the GFS.  Finally, the FV3-GFDL was 
provided by GFDL and is also a 3 km CAM that forecasts out to 84 hours and is also initalized by 
the GFS and then nested over the CONUS.  Some important differences are that the FV3-GFDL 
uses GFDL microphysics and an adjusted GFLD PBL scheme to balance some GFS issues.  
 
ESRL High Resolution Rapid Refresh - Experimental (HRRRv3) 
 
The operational HRRR model (version 2) 
(https://rapidrefresh.noaa.gov/hrrr/HRRR/Welcome.cgi?dsKey=hrrr_ncep_jet) is on a 3 km grid 
and uses boundary conditions from the hourly updated, radar-DFI-assimilated Rapid Refresh 
(RAP) model. The HRRR uses GSI hybrid data assimilation (instead of 3D-VAR), is initialized with 
latest 3-D radar reflectivity and features a WRF-ARW core version 3.6.1, Thompson 
microphysics, and is fully convection allowing.  The operational HRRR is run every hour and 
produces hourly and sub-hourly forecasts out to 18 hrs.  
 
We will be featuring the experimental version, HRRR version 3 (HRRRv3; 
https://rapidrefresh.noaa.gov/hrrr/HRRR), in the 2017 FFaIR Experiment.  This version runs 
every hour with output to 18 hrs (01z, 02z, 04z, 05z, ....), 36 hours (00z, 03z, 06z…) or 48 hrs 
(12z).  The experimental HRRRv3 remains on a 3-km grid with hourly runs that are changed to 
the forecast lengths listed above.  The HRRRv3 is initialized with an hour of 3-D radar reflectivity 
using a latent-heating specification technique including some refinements in this latent-heating 
from the parent RAPv4 model.  The HRRRv3 uses grid-point statistical interpolation (GSI) hybrid 
GFS ensemble-variational data assimilation of conventional observations.  Building upon the 
advancements in the operational HRRRv2 at NCEP, HRRRv3 includes assimilation of TAMDAR 
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aircraft observations, refines assimilation of surface observations for improved 
lower-tropospheric temperature, dewpoint (humidity) winds and cloud base heights and places 
more weight on the ensemble contribution to the data assimilation.  HRRRv3 adds assimilation 
of lightning flash rates as a complement to radar reflectivity observations through a similar 
conversion to specified latent heating rates during a one-hour spin-up period in the model. 
HRRRv3 also contains numerous model changes including an update to WRF-ARW version 3.9 
including the Thompson microphysics, transition to a hybrid sigma-pressure vertical coordinate 
for improved tropospheric temperature, dewpoint and wind forecasts along with a higher 
resolution (15 second) land use dataset.  Physics enhancements have also been made to the 
MYNN planetary boundary layer (PBL) scheme and RUC land surface model along with 
additional refinements to shallow cumulus/sub-grid-scale cloud parameterizations including 
enhanced interactions with the radiation and microphysics schemes for greater retention of 
cloud features. 
 
HRRRv3 is run hourly and provides forecasts as follows: 

o Hourly output out to 36 hrs from runs at 00z, 03z, 06z, etc… 
o Hourly output out to 18 hrs from runs at 01z, 02z, 04z, 05z, etc… 
o Sub-hourly output to 15 hrs from all runs 

 
Experimental Ensemble Guidance 
 
ESRL/GSD HRRR Time-lagged Ensemble (HRRR-TLE) 
 
Time-lagged ensembles are a computationally inexpensive substitute for full ensembles, using 
the “free” uncertainty information provided by a single, rapidly-cycled deterministic model (or a 
small set of deterministic models).  Rather than running a large number of simultaneous 
simulations where initial conditions are perturbed based on uncertainty information from a 
data assimilation routine, time-lagging simply combines forecasts from deterministic model 
runs initialized at different times.  Differences in the initial conditions from one run to the next 
are used in lieu of uncertainty estimates of the initial atmospheric state. 
 
The HRRR-TLE combines forecasts from multiple deterministic HRRR runs, initialized at different 
times but valid at the same time.  The current version, frozen for the duration of FFaIR 2017, 
uses the 3 most recent runs of the experimental ESRL HRRR, Version 3.  The HRRRv3 operates 
with a ~2-h latency, and we chose to set hour zero of the HRRR-TLE forecast to the current 
time. For example, the 12z HRRR-TLE utilizes forecasts from HRRRv3 runs initialized at 8z, 9z 
and 10z.  
 
Beyond HRRR-TLE forecast hour 12, we rely on a once-every-3-hours extension of the HRRRv3 
to 36 hours.  These HRRRv3 runs have a longer latency than the hourly 18-h HRRRv3.  This 
means the longer-range HRRR-TLE forecasts have to “reach back” to much older HRRRv3 runs 
to construct probabilities from 3 members.  For example, the 12z HRRR-TLE probabilistic QPF 
for hours 18-24 uses the 09z HRRRv3 (FHR 21-27), 06z HRRRv3 (FHR 24-30) and 03z HRRRv3 
(FHR 27-33).  This method could potentially result in a significant shift between the 12 and 13-h 
HRRR-TLE forecasts -- a topic worthy of discussion/evaluation during FFaIR. 
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The probabilistic QPF exceeding 1, 2, 5, 10, 25, 50, and 100-year Average Return Interval (ARI) 
are valid only for 6-hour intervals, are produced from bias corrected 6-h QPF (see previous 
section), are 40-km neighborhood probabilities, and also use an 100-km spatial filter to increase 
spread.  So for example, a 50% value can be interpreted as, “a 50% chance of 6-h precipitation 
exceeding the 100-year ARI threshold, somewhere within 40 km.” 
 
The probabilistic QPF on saturated soil values represent the probability of 1-h calibrated rainfall 
exceeding various hourly thresholds at locations where the soil is saturated.  For this 
application, “saturated soil” is defined where the soil moisture availability (ratio of 
top-soil-layer [0-1 cm] volumetric soil moisture to the volumetric soil capacity) is at least 95 
percent.  High hourly precipitation rates on saturated soil indicate high potential for initiation 
or worsening of localized urban or stream flooding (and potentially later impacts to mainstem 
rivers).  These products use a 40-km neighborhood (e.g., 50% chance of 1” of QPF over 
saturated soil somewhere within 40-km), and benefit from increased spread through 60-km 
spatial and 3x1-h temporal filters, as employed for 1-h PQPF products.  A summary of these 
products is in (Table 5).  Web site: http://rapidrefresh.noaa.gov/hrrr/hrrrtle/ 
 
Table 5. Probabilistic fields available from the HRRR-TLE for FFaIR 2017. 

HRRR-TLE Probabilistic QPF Probability of 6-h precip > 0.5, 1.0, 2.0, 3.0, 6.0 in 
Probability of 3-h precip > 0.5, 1.0, 2.0, 3.0 in 
Probability of 1-h precip > 0.5, 1.0, 2.0 in 

HRRR-TLE Probabilistic ARI Exceedance Probability of 6-h precip exceeding 1, 2, 5, 10, 25, 50 and 
100-yr ARI 

HRRR-TLE Probabilistic QPF on Saturated 
Soil 

Probability of 1-h rainfall on saturated soil > 0.5, 1.0, 2.0 in 

 
 
ESRL/GSD Experimental HRRR Ensemble (HRRR-E) 
 
The HRRR ensemble (HRRR-E) is initialized at 09 UTC each day from a combination of 
atmospheric RAP mean and GFS data assimilation ensemble (GDAS) perturbations along with 
HRRR land surface data.  A total of 36 3-km HRRR members are initialized and then cycled 
hourly through 00 UTC using an Ensemble Kalman filter to assimilate conventional and radar 
observations each hour followed by the application of the HRRR cloud analysis and soil 
adjustment to each member.  For the experiment, the ensemble will be run once a day at 00 
UTC when the nine members produce 36 hr forecasts over a full CONUS domain.  Stochastic soil 
moisture perturbations are introduced across all members at 09 UTC and boundary layer 
parameter perturbations are applied at 00 UTC along with lateral boundary perturbations and 
inflation during the cycled data assimilation to promote spread and represent both initial 
condition and model forecast uncertainties.  An ensemble post-processing system is applied to 
the nine HRRRE forecast members to produce all-season weather hazard probabilities including 
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heavy rainfall as is done with the time-lagged HRRR.  HRRR-E uses WRF-ARW version 3.9 with 
the same physics configuration as the HRRRv3. 
 
EMC Experimental High Resolution Ensemble Forecast Version 2 (HREFv2) 
 
The HREF is an ensemble product generator utilizing multiple cycles of operational convective 
allowing models of ~3 km horizontal scale:  namely the High-Resolution Window (HiresW; both 
the Weather Research and Forecast (WRF) Advanced Research WRF (ARW) and Non-hydrostatic 
Multiscale Model on the B-grid (NMMB) members) and the NAM CONUS nest.   The 
membership of the HREF for the 2017 FFaIR experiment will match the parallel HREFv2 system 
with eight members:  the two most recent runs of the NAM CONUS nest, the HiresW NMMB, 
and of two different HiresW ARW members (Figure 65).  Probabilistic guidance has been 
enhanced with the addition of neighborhood probabilities (Harless et al. 2010) and Gaussian 
smoothing (Silverman 1986) of probabilities.  Probabilities of precipitation exceeding and return 
interval values, and probability-matched (PM; Ebert 2001) mean fields also are generated by 
this version. 

 
This experimental HREF will be run for the 00Z, 06Z, 12Z, and 18Z cycles, generating output to 
36 hours from the cycle time.  A description of the products most likely to be useful for the 
FFaIR experiment: 

● Ensemble mean precipitation in three forms (as a conventional mean, as a PM mean, 
and as a “blend” of the conventional and PM means). 

● Precipitation probability of exceedance (POE) at various fixed thresholds over several 
duration periods (e.g., percentage of the ensemble exceeding 3” over a 6 h period).  This 
product and the other POE fields are expressed as neighborhood probabilities computed 
over a ~40 km radius neighborhood, and also are Gaussian smoothed. 

● Precipitation POE of return interval values (e.g., percentage of ensemble exceeding the 
50 year return interval value for a 6 h accumulation period). 
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Figure 65. The HREFv2 ensemble membership including one real-time and one time-lagged 
ARW, one real-time and one time-lagged NMMB, one real time and one time-lagged NAM 
CONUS Nest, one real-time and one time-lagged “mem2” ARW. 
 
In addition to a suite of fields relative to precipitation forecasting, derived probabilities will be 
available from a special HREFv2 run for the 2017 FFaIR Experiment (Table 6). 
 
Table 6. Probabilities available from the special HREFv2 for FFaIR 2017 

HREFv2 Probabilistic QPF 1-h, 3-h QPF > 0.5, 1, 2 inches 
6-h, 12-h, 24-h QPF > 1, 2, 3 inches 

HREFv2 Probabilistic FFG Exceedance 3-h QPF > 3-h, 6-h, 12-h, 24-h FFG 

HREFv2 Probabilistic ARI  Exceedance QPF > 2, 5, 10, 25, 100-year ARIs 

HREFv2 Fixed 100-km Filter Prob QPF* 3-h, 6-h QPF > 0.5, 1 inches 

HREFv2 Variable (EAS) Filter Prob QPF* 3-h, 6-h QPF > 0.5, 1 inches 

 
*Traditional ensemble probabilities are computed as the number of members that exceed a 
threshold divided by the total number of members at a given point. Such methods have been 
employed for many years in comparatively coarse resolution models. However, with 
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high-resolution ensembles, i.e. those where convection is not parameterized, spatial 
displacement at the grid point level is large. This issue has motivated the development of 
methods which account for this spatial uncertainty. As part of the USWRP project, 2017 FFaIR 
will feature two different types of fractional coverage approaches for the generation of point 
probabilities will be evaluated (e.g. “neighborhood methods”). The first method expands the 
traditional point probability calculation to cover a 100-km radius around a given point. In other 
words, the probability represents the total number of points from each member in a 100-km 
radius around each grid point that exceed a threshold divided by the total number of points. 
The second method, which is considered experimental, attempts to account for the fact that a 
uniform radius is not always appropriate, i.e. orographically forced precipitation. In such cases, 
the traditional fractional coverage approach can reduce the probabilities of these often well 
handled events. Therefore, a variable radius approach has been developed based upon 
ensemble agreement scale (EAS) similarity criteria outlined in Dey et al. (2016). This approach 
varies the neighborhood radius size according to member-member similarity criteria. In this 
method, the radius sizes range from 10-km, for member forecasts that are in good agreement 
(e.g. lake effect, complex terrain, very short forecasts, etc.), to 100-km. 
 
OU/CAPS WRF-ARW+FV3 SSEFX 
 
The experimental Storm-Scale Ensemble Forecast (SSEFX) is generated with the Weather 
Research and Forecast (WRF) modeling system (Version 3.8.1), with the Advanced Research 
WRF (ARW) core, and the experimental GFDL FV3.  CAPS will produce 10 (9 ARW, 1 FV3) 
members and one control member to support the FFaIR Experiment. The 3-km FV3 will feature 
Thompson microphysics.  Membership details can be found in Table 7.  Major features for 2017 
include: 
 

● 3-km horizontal grid spacing over the CONUS domain (1620×1120) 
● WRF version 3.8.1 is used for 2017 season. (coupled with ARPS v5.4) 
● 15 members, including 14 ARW and 1 FV3 members 
● 00 UTC 60-hour forecast (FV3 deterministic member out to 84 h) 
● ARPS 3DVAR analysis of radar data 

 
Table 7. Membership characteristics of the SSEFX for the 2017 FFaIR Experiment.  For all ARW 
members: ra_lw_physics= RRTMG; ra_sw_physics=RRTMG; cu_physics=none 

Member IC BC Radar Microphy LSM PBL 

arw_cn 00Z ARPSa 00Z NAMf yes Thompson Noah MYJ 

arw_m2 arw_cn + 
arw-p1_pert 

21Z SREF 
arw-p1 

yes P3 Noah YSU 

arw_m3 arw_cn + 
arw-n1_pert 

21Z SREF 
arw-n1 

yes MY Noah MYNN 
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arw_m4 arw_cn + 
arw-p2_pert 

21Z SREF 
arw-p2 

yes Morrison Noah MYJ 

arw_m5 arw_cn + 
arw-n2_pert 

21Z SREF 
arw-n2 

yes P3 Noah MYNN 

arw_m6 arw_cn + 
nmmb-p1_pert 

21Z SREF 
nmmb-p1 

yes MY Noah MYJ 

arw_m7 arw_cn + 
nmmb-n1_pert 

21Z SREF 
nmmb-n1 

yes Morrison Noah YSU 

arw_m8 arw_cn + 
nmmb-p2_pert 

21Z SREF 
nmmb-p2 

yes P3 Noah MYJ 

arw_m9 arw_cn + 
nmmb-n2_pert 

21Z SREF 
nmmb-n2 

yes Thompson Noah MYNN 

arw_m10 arw_cn + 
arw-n3_pert 

21Z SREF 
arw-n3 

yes Thompson Noah MYJ 

fv3 GFS - no Thompson GFDL GFDL 

 
New for 2017, the SSEFX will be producing an experimental Localized Probability Matched 
Mean to be tested in FFaIR.  The localized probability-matched mean (LPM) calculates the 
probability-matched mean over small patches (typically 6×6 or smaller) of the domain, using 
calculation regions with substantial overlap (typically around 60×60 gridpoints for each 6×6 
patch), and then smooths the resulting field with a Gaussian smoother.  The result is a forecast 
field that provides many of the advantages of the probability-matched mean (PM) while 
retaining small-scale structures in the resulting LPM field that may be informative or of 
meteorological interest.  The LPM also does not suffer from potential errors resulting from 
considering all precipitation from a full CONUS domain for each smaller patch, limiting the 
influence to the nearest 100 km or so, ensuring that values used are from local storms and the 
local near-storm environment. 

An example is shown in Figure 66, for a 3-hour rainfall forecast where rain was present over                 
much of the southern Great Plains. The PM field (Fig. 66a) exhibits a typical highly-smoothed               
distribution of rainfall amounts; this is typical of PM forecasts. In contrast, the LPM field (Fig.                
66b) retains much more small-scale structure, particularly for storms in Kansas, and the             
predicted rainfall in Wisconsin. 
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Figure 66.  Sample PM (a) and LPM (b) means for 3-hour accumulated rainfall forecasts. 
 
In addition to a suite of fields relative to precipitation forecasting (including conventional, 
probability-matched, and maximum QPF), derived probabilities will be available (Table 8). 
 
Table 8. Probabilities available from the SSEFX during FFaIR 2017 

SSEFX Probabilistic QPF 1-h, 3-h QPF > 0.5, 1, 2 inches 
6-h, 12-h, 24-h QPF > 1, 2, 3 inches 

SSEFX Probabilistic FFG Exceedance 3-h QPF > 3-h, 6-h, 12-h, 24-h FFG 

SSEFX Probabilistic ARI  Exceedance QPF > 2, 5, 10, 25, 100-year ARIs 

 
National Blend of Modes Version 3 (NBMv3): 
The NBMv3 runs every hour with 15 different deterministic and ensemble systems. For the 
CONUS, typically 4 to 6 new model runs each hour, with up to 7 or 8 (~50% new) on four cycles. 
The NBMv3 uses TOD (Time of Day) concept, rather than the “model” cycle.  Therefore, a 12z 
run of NBM V3.0 does not contain a single 12z model run.  It is a data cutoff time (newest 
models are from 10-11z in this example;  several 00z to 06z models included).  NBM V3.0 Will 
be run each hour on top of hour, and available 50-60 minutes later.  Models included are found 
in Table 9. 
 
Table 9. Data dependencies for the NBMv3. 

Global Models Mesoscale Models 

GFS - 0.25 degree HRRR - 3 km 

GEFS mean + members - 0.5 degree NAM Low-Res - 12 km 

CMC deterministic (PoP12/QPF only) - 1 degree NAM High-Res - 3 km (pending) 
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CMC ensemble mean + members - 1 degree HIRESW (NMMB and ARW cores) - 3 km 

FNMOC - 1 degree RAP - 12 km 

GMOS - 2.5 km SREF - 40 km 

EKDMOS - 2.5 km GLMP - 2.5 km 

CCPA (used in NBM Precip SQM) - ~ 13 km URMA (CONUS, AK, HI, PR) - 2.5 km 

NBM Precip Stochastic Quantile Mapping - 2.5 km  

 
Other Experimental Tools 
 
Experimental ERO “First-Guess” Field Using Reforecast Data, ARIs, Machine Learning 
 
Developed by Greg Herman and Russ Schumacher of Colorado State University, this first-guess 
field is a prediction system comprised of random forests which is trained with 11 years (January 
2003 - August 2013) of Days 2 and 3 GEFS Reforecast (GEFS/R) data.  While forecasts are made 
on the GEFS/R grid, verification is first done on the Stage IV grid (in tabulating where Stage IV 
24-hr QPE exceeds NOAA Atlas-14 ARI precipitation thresholds) and then projected onto the 
nearest GEFS/R grid point.   The system then applies the latest 00Z GEFS/R run using select 
fields such as precipitation, convective available potential energy, and precipitable water, as 
examples.  The product is issued daily for two 24-hr (12-12 UTC) forecast periods  (Day 2 is 
hours 36-60, Day 3 is hours 60-84). 
 
Through machine learning and decision trees, the system can produce the probability that an 
Average Recurrence Interval (ARI) exceedance within 40 km will occur.  The 1000 trees, each 
created with a different predictor at the root, make up the “Random Forest.”  When a new set 
GEFS data is put into the system, the data traverses down a tree until a terminal node is 
reached, giving a deterministic prediction as the outcome.  In the model, this value is either a 
"2" for a 10+ year ARI exceedance, a “1” for a 1-year ARI exceedance without a 10-year ARI 
exceedance, or a “0” for a non-exceedance.  All of trees indicating 2's and 1’s are tallied up and 
divided by the total numbers of trees (B=1000), which is essentially the probability of 
occurrence at that point for the two ARI levels. 
 
The product issued is a CONUS grid indicating the following (Figure 67):  

● Probability of at least one 1-yr ARI exceedance 
● Probability of at least one 10-yr ARI exceedance 
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Figure 67.  An example of the Herman-Schumacher ARI exceedance product to be tested as a 
first-guess field for the experimental Days 2 and 3 Excessive Rainfall Outlooks.  Here shown is 
the Day 2 probability of 1 year 24 hour ARI exceedance within 40 km of a point. 
 
Experimental Remotely-Sensed Products 
 
CIRA LPW: 
 
The total precipitable water products are developed by John Forsythe, Stanley Kidder, and 
Andrew Jones at the Cooperative Institute for Research in the Atmosphere (CIRA) as well as 
Sheldon Kusselson at NOAA NESDIS / Satellite Analysis Branch in Washington D.C. CIRA has 
partnered with the SPoRT Center to use SPoRT's expertise in transitioning products to the 
National Weather Service. This partnership has allowed CIRA to transition two total precipitable 
water products and the suite of layered precipitable water products to SPoRT's partner National 
Weather Service offices for evaluation and comment. A key component of this partnership is 
SPoRT's knowledge of transitioning products to the forecaster's native display environment, 
AWIPS/AWIPS-II (Figure 68). A major emphasis of CIRA is to create observation based products 
that can provide information in traditionally data poor regions, such as the oceans. This feature 
has made the precipitable water products widely popular with SPoRT's coastal National 
Weather Service partners. Each of the total PW products are available every six hours and has a 
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10 km resolution, while the layered PW product suite updates every three hours and is mapped 
to a 16 km Mercator grid. 
https://nasasporttraining.files.wordpress.com/2017/02/layered-precipitable-water-quick-guide
-by-nasa-sport.pdf 
 

 
Figure 68.  Example of CIRA Layer Precipitable Water (LPW) in AWIPS 
 
GOES-16 TPW/LPW: 
 
The Total Precipitable Water (TPW) product is computed from the retrieved atmospheric 
moisture profiles and represents the total integrated moisture in the atmospheric column from 
the surface to the top of the atmosphere. This product will provide useful information to 
weather forecasters and hydrologists to improve their situational awareness for a number of 
situations that require forecasting of events, such as heavy rain, flash flooding, onset of Gulf of 
Mexico return flow, and the onset of the Southwest United States monsoon. The TPW product 
also serves to initialize the moisture field used in numerical weather prediction models. 
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APPENDIX C 
 
WPC MODE Settings for Objective Verification 
 

• 60 HR & 84 HR QPF verified against Stage IV QPE 

• 00Z forecast cycle used 
• Both QPF and QPE re-gridded to a common 5km lat/lon grid 
• CONUS mask applied to common grid 
• Thresholds of 0.5”, 1.0”, 2.0”, 4.0” and 6.0” investigated 

• MODE 

• Grid stats harvested from MODE CTS 
• Circular convolution radius of 3 grid squares used  
• Double thresholding technique applied  

• MODE Analysis  

• Summary of all forecasted vs. observed shapes throughout experiment 
• Describes centroid distance, angle, and interest  
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